

Chainflex® cable	Requirements	Travel distance	Resistance to oil
CF210.UL CF260 CF111/CF111.D CF130.UL CF140.UL CF240 CF77.UL.D CF78.UL CF5 CF6 CF211 CF21.UL CF30 CF31 CFLK CF2 CF112 CF113/CF113.D CFLG.2H CF27.D CF14.CAT5 CFCRANE CF9.UL CF10.UL CF10.UL CF11/CF11.D CF12 CF11.LC./LC.D CFBUS CFKOAX CF34.UL.D CF35.UL CF300.UL.D CF98 CF9 CF10 CF98 CF99 CF10 CF330.D CF380 CF330.D CF340	444444455555555556666666666666666666666	1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3	2 3 3 4 1 1 2 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4

Your way through the Chainflex® catalogue.

Chainflex® lasts or your money back!! igus® tested!	18
Control Cables	52
Data, Bus, Measuring system cables, Koax cables	98
Fibre optic cable (FOC)	146
Servo Cables	158
Power cables	178
Twistable cables	210
Chainflex® video-/vision-/ bus technology	224
Chainflex® network technology	248
Chainflex® CF.INI systems for initiators	258
Chainflex® ReadyCable®	272
Connectors	396
Chainfix Strain Relief Devices	425
ReadyChains® Ready-made Energy Chain Systems®	437
Designing with igus® Data and Schedules	448

Chainflex® types

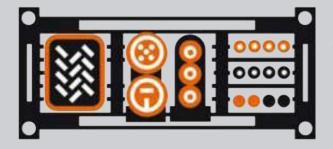
	Chainflex®	Jacket	Shield	Minimum bending radius, moved [factor x d]	Temperature, moved from/to [°C]	Minimum bending radius, fixed [factor x d]	Temperature, fixed from/to [°C]	Price index
Control cables								
	CF130.UL	PVC		7,5-10	-5/ +70	5	-20/ +70	000
	CF140.UL	PVC	~	7,5-15	-5/ +70	5	-20/ +70	000
	CF5	PVC		6,8-7,5	-5/ +70	4	-20/ +70	•••
	CF6	PVC	v	6,8-7,5	-5/ +70	4	-20/ +70	•••
	CF77.UL.D	PUR		6,8-7,5	-35/ +80	4	-40/ +80	•••
11110	CF78.UL	PUR	•	6,8-7,5	-35/ +80	4	-40/ +80	•••
	CF2	PUR	v	5	-20/ +80	4	-40/ +80	•••
	CF9	TPE		5	-35/ +100	3	-40/ +100	•••
	CF10	TPE	•	5	-35/ +100	3	-40/ +100	•••
	CF9.UL	TPE		5	-35/ +100	3	-40/ +100	000
	CF10.UL	TPE	~	5	-35/ +100	3	-40/ +100	000
	CF98	TPE		4	-35/ +90	3	-40/ +90	•••
	CF99	TPE	~	4	-35/ +90	3	-40/ +90	•••

These values are based on concrete applications or tests. These values do not represent the limit of what is technically feasible.

Get online and use all the advantages of www.igus.eu

Download the eplan-library for any type of cables

www.igus.eu/eplan-download


Chainflex[®] types

Approvals and standards	Flame-retardant	Oil-resistant	Halogen-free	UV-resistant	Torsion resistant	v max. unsupported [m/s]	v max. gliding [m/s]	a max. [m/s²]	Number of cores	Cross section Ø [mm²]	Page
											52
CE 🤭 (Bus	~				~	3	2	20	2 - 25	0,25 - 6,0	54
C 💝 😩 🙉 us	~					3	2	20	3 - 36	0,25 - 2,5	58
C 🤝 🔤 😩 🦓 us	~	~		~	~	10	5	80	2 - 42	0,25 - 2,5	62
C 🤝 🚾 💮 🙉 us	~	~		~		10	5	80	3 - 25	0,25 - 2,5	66
C 🤝 😩 🔼 🌉	~	~	~	~	~	10	5	80	2 - 30	0,50 - 4,0	70
C 🤝 🏐 🤼 u	~	~	~	~		10	5	80	3 - 24	0,50 - 4,0	72
C 🤝 🏐 🤼 u	V	~		~		10	5	80	3 - 48	0,14 - 1,5	74
C € 💖 🔤		~	~	~	~	10	6	100	2 - 36	0,25 - 35,0	78
C € 💖 🔤		~	~	~		10	6	100	2 - 25	0,14 - 4,0	82
C 😌 🚾 🕞 🙉 🗷 u	~	~		~	~	10	6	100	2 - 36	0,25 - 6,0	86
C 😌 🚾 🕞 Alus	~	~		~		10	6	100	2 - 25	0,25 - 4,0	90
(€ 💖 🔤		~	~	~	~	10	6	100	2 - 8	0,14 - 0,5	94
C € 💖 🔤		~	~	~		10	6	100	2 - 8	0,14 - 0,34	96

Chainflex® types mentioned in the catalogue as "resistant to bio oil" have been tested by DEA following VDMA 24568 with Plantocut 8 S-MB.

Table of contents according to part number ► Page 472 Table of contents according to industries ► Page 478

Chain - cable - guarantee!

Ask for fully harnessed and preassembled Ready-Chains® – increase your cash-flow and profit immediately. The igus® system guarantee also covers components delivered loose.

www.readychain.eu

Chainflex® types

	Chainflex [®] Cable	Jacket	Shield	Minimum bendi <mark>ng</mark> radius. moved [factor x d]	Temperature, moved from/to [°C]	Minimum bending radius, fixed [factor x d]	Temperature, fixed from/to [°C]	Price index
Data cables								
	CF240	PVC	•	10-12	-5/ +70	5	-20/ +70	000
	CF211	PVC	v	10	-5/ +70	5	-20/ +70	000
	CF112	PUR	•	10	-35/ +80	5	-40/ +80	•••
	CF113	PUR	v	10	-35/ +80	5	-40/ +80	•••
	CF111	TPE	~	10	-35/ +100	6	-40/ +100	000
	CF11	TPE	~	10	-35/ +100	5	-40/ +100	•••
	CF12	TPE	~	10	-35/ +100	5	-40/ +100	•••
Bus cables (with s	election chart	for Chai	nflex®	bus cables	s)			
	CFBUS	TPE	~	10-12,5	-35/ +70	5	-40/ +70	•••
	CF11.LC	TPE	~	10	-35/ +70	5	-40/ +70	•••
	CF11.LC.D	TPE	•	10	-35/ +70	5	-40/ +70	•••
Annual Control	CF14 CAT5	TPE	•	12,5	-35/ +70	7,5	-40/ +70	•••
Measuring system	cables							
	CF211	PVC	v	10	-5/ +70	5	-20/ +70	000
all the state of t	CF113.D	PUR	v	10	-20/ +80	5	-40/ +80	•••
SHAM	CF111.D	TPE	v	12	-35/ +100	6	-40/ +100	000
	CF11.D	TPE	~	10	-35/ +100	5	-40/ +100	•••
Koax cables								
	CF Koax 1	TPE		10	-35/ +100	7,5	-40/ +100	•••
Fibre optic cable (FOC)							
	CFLG.2H	PUR		12,5	-20/ +60	7,5	-25/ +60	•••
_	CFLK	PUR		12,5	-20/ +70	7,5	-25/ +70	•••
	CFLG.2LB	TPE		5	-20/ +60	5	-25/ +70	•••
	CFLG. G	TPE		15	-40/ +60	8,5	-40/ +60	•••
These values are based on con	crete applications or te	sts. These valu	es do not i	represent the limit	of what is technical	ly feasible.		

Chainflex[®] types

Approvals and standards	Flame-retardant	Oil-resistant	Halogen-free	UV-resistant	Torsion resistant	v max. unsupported [m/s]	v max. gliding [m/s]	a max. [m/s²]	Number of cores	Cross section Ø [mm²]	Page
											98
CE Ross Company	~	~				3	2	20	3 - 24	0,14 - 0,34	100
CE Ross En Consuls	V	V				5	3	50	2 - 28	0,25 - 0,5	102
CE 🕬 🔤 🕒 🙉 us	~	~	~	~		5	3	50	4 - 12	0,25 - 0,5	104
CE 💖 🔤 🕒 🙉 us	V	V	v	V		5	3	50	4 - 12	0,25 - 0,5	106
CE 🕬 🔤 🕒 🙉 us	~	•		•		2		30	2 - 28	0,25 - 0,5	108
C € Rots		~	~	•		10	6	100	4 - 36	0,14 - 2,5	112
C € Posts		~	v	~		10	6	100	4 - 28	0,25 - 1,0	114
											116
C € 💖 🔤 😩 🔼 us 🌠	~	~		~		10	6	100	2 - 10	0,08 - 1,5	118
C € ROSS		~	~	~		10	6	100	2 - 9	0,25 - 1,0	122
C € (Pols)		~	~	~		10	6	100	2 - 6	0,25 - 1,5	124
C € 💖 🔤 🎩		~	~	~		10	6	100	4 - 10	0,25	126
C € 🤝 🔤 🤃 🙉 🛚	~	V				5	3	50	6 - 16	0,14 -1,0	128
C € 🤝 🔤 🤼 🚜	V	~	~	/		5	3	50	4 - 17	0,14 -1,0	132
C € 💖 🔤 🤃 🔼 🍇	~	~		~		2		30	6 - 16	0,14 - 0,5	136
C € 💖 🔤 🌠		~	~	~		10	6	100	4 - 17	0,14 - 1,0	140
C € 🤭 🔤		~		~		10	5	100	1 - 5		144
											146
C € 💖		~		~		10	6	20	2 50 + 6	2,5/125, 200/230 µn	ո 150
(€ 🦻		V	V	v		10	5	20	1	980/1000 μm	152
C€ 🦻		~		~		10	6	20	2	50 + 62,5/125	154
C €		~	~	~		10	6	20	6 - 12 5	0 + 62,5/125 μm	156
Chainflex® types mentioned in th	e catalo	gue as "	resistan	t to bio	oil" hav	e been tested	by DEA follow	ving VDMA 2	4568 with Plantocu	ut 8 S-MB.	

Chainflex® types

	Cable Cable	Jacket	Shield	Minimum bending radius, moved [factor x d]	Temperature, moved from/to [°C]	Minimum bending radius, fixed [factor x d]	Temperature, fixed from/to [°C]	Price index
Servo cables								
	CF210.UL	PVC	~	10	-5/ +70	5	-20/ +70	•••
	CF21.UL	PVC	~	7,5	-5/ +70	4	-20/ +70	•00
	CF260	PUR	~	10	-20/ +80	5	-40/ +80	•••
	CF270.UL.D	PUR	~	10	-20/ +80	5	-40/ +80	•••
	CF27.D	PUR	~	7,5	-20/ +80	4	-40/ +80	•••
Power cables								
	CF30	PVC		7,5	-5/ +70	4	-20/ +70	•••
Pelam	CF31	PVC	~	7,5	-5/ +70	4	-20/ +70	•••
	CF34.UL.D	TPE		7,5	-35/ +90	4	-40/ +90	000
(A00)	CF35.UL	TPE	~	7,5	-35/ +90	4	-40/ +90	000
	CF37.D	TPE		7,5	-35/ +90	4	-40/ +90	000
(400)	CF38	TPE	~	7,5	-35/ +90	4	-40/ +90	000
	CF300.UL.D	TPE		7,5	-35/ +90	4	-40/ +90	•••
	CFPE	TPE		7,5	-35/ +90	4	-40/ +90	•••
100	CF310.UL	TPE	~	7,5	-35/ +90	4	-40/ +90	•••
	CF330.D	TPE		7,5	-35/ +90	4	-40/ +90	•••
100	CF340	TPE	~	7,5	-35/ +90	4	-40/ +90	•••
	CF BRAID	TPE		7,5	-35/ +70	4	-40/ +70	•••
	CF BRAID.C	TPE	V	7,5	-35/ +70	4	-40/ +70	•••
	CFCRANE i	gupren	v	10	-20/ +80	7,5	-30/ +80	•••

These values are based on concrete applications or tests. These values do not represent the limit of what is technically feasible. Chainflex® types mentioned in the catalogue as "resistant to bio oil" have been tested by DEA following VDMA 24568 with Plantocut 8 S-MB.

Chainflex[®] types

Approvals and standards	Flame-retardant	Oil-resistant	Halogen-free	UV-resistant	Torsion resistant	v max. unsupported [m/s]	v max. gliding [m/s]	a max. [m/s²]	Number of cores	Cross section Ø [mm²]	Page
											158
(E 👺 🔤 🤃 🔊	~	~		•		10		80	4 - 8	0.75 - 35 / Pairs 0.34 - 1.5	160
(€ 💖 🔤 🤃 🙉 us	/	~		v		10	5	80	6 - 8	0.75 - 35 / Pairs 0.34 - 1.5	162
(€ 💖 🌠		~	~	•		10		50	4 - 8	0.75 - 50 / Pairs 0.34 - 1.5	166
(E 👺 🔤 🕞 🙉 🛂	~	~	~	~		10		50	4 - 8	0.75 - 35 / Pairs 0.34 - 1.5	170
CE 💖 🔤 🤃 🔼 us 🌠	v	V	v	v		10	5	80	4 - 8	0.75 - 35 / Pairs 0.34 - 1.5	174
											178
CE 🤲 🔤 🤃 🔣	/	~		~	•	10	5	80	4 - 5	1,5 - 50	180
CE 🥦 🔤 🤃 🙉 us	v	~		v		10	5	80	4 - 5	1,5 - 70	182
(E 🤝 🔤 🤃 🔼 🔣	~	~		~	~	10	6	80	3 - 5	1,5 - 50	184
(E 🤝 🔤 🤃 🙉 us	~	~		~		10	6	80	3 - 4	0,5 - 50	186
(€ % ≤ ≤		~	~	~	~	10	6	80	3 - 5	1,5 - 50	188
(€ [®] / ₉ ==		~	~	~		10	6	80	3 - 4	0,5 - 50	190
(E 💖 🔤 🤃 🔼 🔣	~	~		~		10	6	100	1	6 - 185	192
(€ 💖 🔤 🤃 🙉 us	~	~		~		10	6	100	1	1,5 - 35	194
(E 💖 🔤 🕒 🙉 us	~	~		~		10	6	100	1	4 - 185	196
C € 💖 🔤 🌠		~	~	~		10	6	100	1	6 - 185	198
C € 💖 🔤		V	~	~		10	6	100	1	4 - 185	200
C € 💖 🔤 💮 🌉	~	~		~		10	6	80	8	2,5	202
(€ ಶ 🔤 🤃	~	V		~		10	6	80	8	2,5	202
C € Polis	~	~		~		10	6	50	1	25 - 95	204

Table of contents according to part number ► Page 472 Table of contents according to industries ► Page 478

Chainflex® types

	Chainflex®	Jacket	Shield	Minimum bendi radius, moved [factor x d]	Temperature, moved from/to [°C]	Minimum bendi radius, fixed [factor x d]	Temperature, fixed from/to [°C]	Price index
Pneumatic hose								
Chemistre - Bro	CFAIR	PU		10	-25/ +80	8	-40/ +85	•••
CHAINFLEX CLEAN ATA	CF Clean AIR	PE		10	-25/ +60	8	-30/ +65	•••
Tordierbare Leitung	gen							
	CFROBOT9	PUR		10	-25/ +80	4	-40/ +80	•••
	CFROBOT8	PUR	~	10	-20/ +70	7,5	-25/ +70	•••
	CFROBOT6	PUR		10	-25/ +80	4	-40/ +80	•••
	CF ROBOT7	PUR	~	10	-25/ +80	4	-40/ +80	•••
	CFROBOT5	TPE		12,5	-20/ +60	7,5	-25/ +60	•••
- 100	CF ROBOT	TPE	~	10	-35/ +100	4	-40/ +100	•••

These values are based on concrete applications or tests. These values do not represent the limit of what is technically feasible. Chainflex® types mentioned in the catalogue as "resistant to bio oil" have been tested by DEA following VDMA 24568 with Plantocut 8 S-MB.

Chainflex® types

Approvals and standards	Flame-retardant	Oil-resistant	Halogen-free	UV-resistant	Torsion resistant	v max. unsupported [m/s]	v max. gliding [m/s]	a max. [m/s²]	Number of cores	Cross section Ø [mm²]	Page
RoAS		~	~			10	6	50			206
Ross Room		~	~			10	6	50			208
											210
C € 🤝 🔤	V	~		~	~	10)	10	2 - 18	0,5 - 2,5	214
C € 💖 🔤	V	~		~	~	10)	10	2 - 4	0,15 - 0,25	216
C € 🤝 🔤	~	~		~	~	10)	10	3 - 4	1,5 - 35	218
C € 🤝 🔤	V	/		/	V	10)	10	3 - 4	1,5 - 35	218
C € 🤝 🔤		~		~	V	10)	10	2	50 + 62,5/125 μm	220
C € 🤭 🔤 🕒 🙉 🗷		~			~	10)	10	1	10 - 50	222

Table of contents according to part number ► Page 472 Table of contents according to industries ► Page 478

Chainflex® ReadyCable®

		Cable type	Jacket	Page
Video-, vision engineering	/bus technology	(with camera reference list ▶ page 244)		224
	FireWire	FireWire special cable	TPE	226
- L	USB	USB special cable	TPE	230
-	GigE	GigE special cable	TPE	232
	LWL	FOC special cable	PUR	234
=	LWL	FOC special cable for robotic	TPE	238
	Koax	Koax special cable	TPE	240
Network-/ethernet-/fibre	cables (FOC)			248
	CFLG.6G	Gradient fiber glass cable	TPE	250
	CFLG.12G	Gradient fiber glass cable	TPE	252
	CAT5	Ethernet special cable	TPE	254
19	CAT6	Ethernet special cable	TPE	256

Chainflex® ReadyCable®

	Cable type	Jacket	Page
Initiators CF9 – CF.INI (minimum bending	g radius 5 x d)		258
	Direct line M12 x 1, straight/angled	TPE	260
	Direct line M12 x 1, straight/angled, LED	TPE	261
	Connecting cable M12 x 1, straight/angled	TPE	262
	Direct line M8 x 1, straight/angled	TPE	263
	Direct line M8 x 1, angled, LED	TPE	264
	Connecting cable M8 x 1, straight/angled	TPE	265
Initiators CF10 - CF.INI (minimum bendir	ng radius 5 x d) 360° shielded		
	Direct line M12 x 1, straight/angled	TPE	266
	Connecting cable M12 x 1, straight/angled	TPE	267
Initiators CF98 – CF.INI (minimum bendir	ng radius 4 x d)		
	Direct line M12 x 1, straight/angled	TPE	268
	Connecting cable M12 x 1, straight/angled	TPE	269
	Direct line M8 x 1, straight/angled	TPE	270
	Connecting cable M8 x 1, straight/angled	TPE	271

Chainflex ReadyCable Harnessed according

	to standard	Cable type	Jacket	Page
Cables for Drive Techno	logy			273
	Siemens – Sele	ection for part no. and materia	I	276
0 20	Siemens	Servo cable	PUR/PVC	278
The second	Siemens	Power cable	TPE/PVC	282
- EFE	Siemens	Signal cables/encoder	TPE/PVC	286
	Lenze - Select	ion for part no. and material		294
0 000	Lenze	Servo cable	PUR/PVC	296
II W	Lenze	Power cable	PUR/PVC	300
	Lenze	Signal cables/encoder (Resolver)	TPE/PVC	304
	Lenze	Signal cables/encoder (Encoder)	TPE/PVC	308
C [7]	Lenze	Signal cables/encoder (Feedback)	TPE/PVC	312
	Lenze	Signal cables/encoder (Decoder)	TPE/PVC	316
- CP	Lenze	Control cable (Fan)	TPE/PVC	320
	Rexroth - Sele	ction for part no. and material		324
	Rexroth	Servo cable	PUR/PVC	326
	Rexroth	Signal-/encoder cable	TPE/PVC	334
	Fanuc - Select	tion for part no. and material		338
(10)	Fanuc	Servo cable	PUR	340
	Fanuc	Signal cables/encoder	TPE	344
	SEW - Selection	on for part no. and material		348
	SEW	Servo cable	PUR/PVC	350
	SEW	Power cable	TPE/PVC	354
	SEW	Signal cables/encoder	TPE/PVC	358

[&]quot;Siemens" is a registered trademark of "Siemens AG, München" / "Lenze" is a registered trademark of "Lenze GmbH & Co. KG, Extertal" / "Rexroth" is a registered trademark of "Bosch Rexroth GmbH, Lohr" / "Fanuc" is a registered trademark of "Fanuc Ltd., Tokyo/Yamanashi" / "SEW" is a registered trademark of "SEW-EURODRIVE GmbH & Co KG, Bruchsal"

Plug configuration "Quick Pin" ► www.igus.eu/quickpin

Chainflex® ReadyCable®

Harnessed	according
-----------	-----------

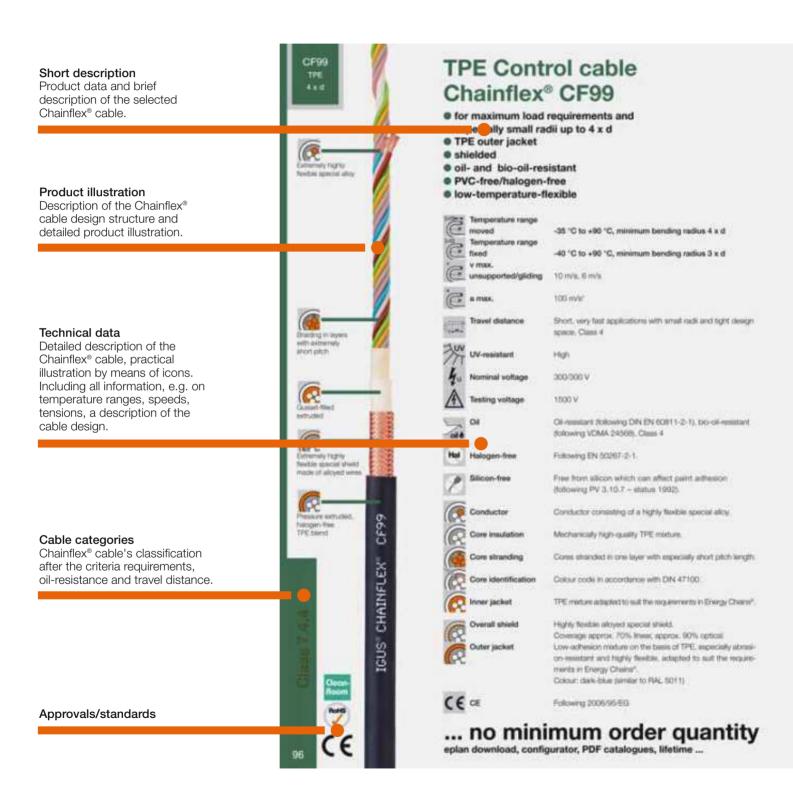
	to standard	Cable type	Jacket	Page
Cables for Drive Technol	ogy			
	Heidenhain – Se	election for part no. and mater	ial	362
<u> </u>	Heidenhain	Signal cables/encoder	PUR/TPE	364
	ELAU - Selection	on for part no. and material		368
	ELAU	Servo cable	PVC/PUR	370
	ELAU	Signal cables/encoder	PVC/TPE	372
	Danaher Motion	- Selection for part no. and m	aterial	374
	Danaher Motion	Signal cables/encoder	PVC/TPE	376
	Danaher Motion	Servo cable	PVC/PUR	380
	Danaher Motion	Power cable	PVC/TPE	384
	B&R - Selection	n for part no. and material		388
	B&R	Servo cable	PVC/PUR	390
	B&R	Signal cables/encoder (Resolver)	PVC/TPE	392
GE 2	B&R	Signal cables/encoder (EnDat)	PVC/TPE	394

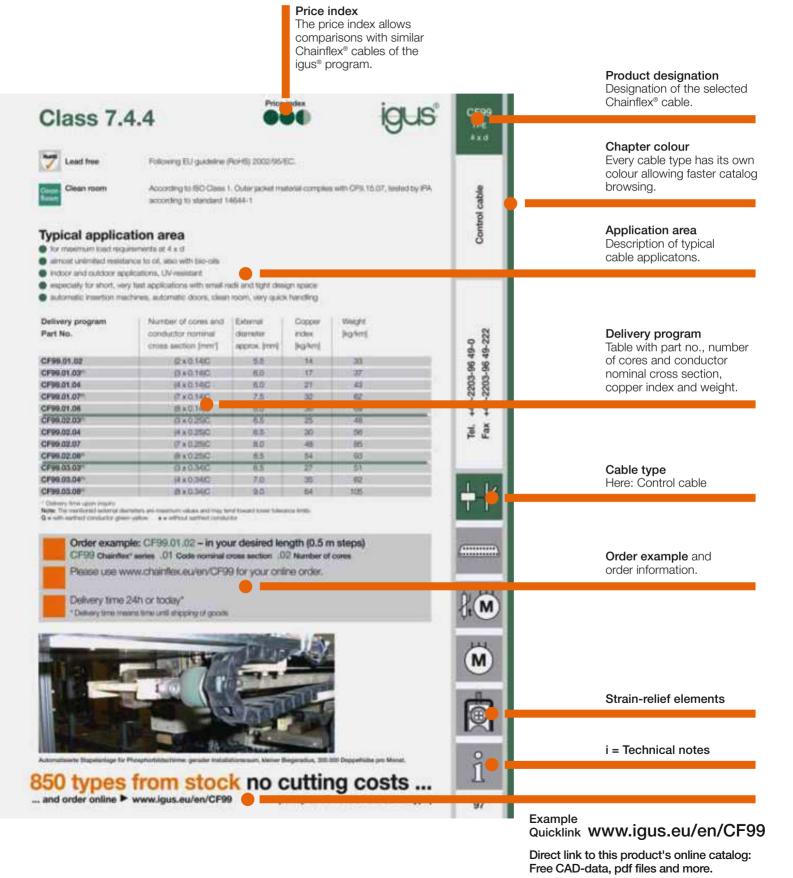
"Heidenhain" is a registered trademark of Dr. Johannes Heidenhain GmbH, Traunreut / "ELAU" is a registered trademark of Elektronik-Automations-AG, Marktheidenfeld / "Danaher Motion" iis a registered trademark of Danaher Motion Technology LLC, Delaware

Chainflex® accessory

Connectors		396
	Test order – test igus®!	397
TO TO	SERIES A Signal connector	398
>	SERIES B Power connector	402
To To	SERIES B Power connector	404
	SERIES M17 Signal- and power connector	405
	SERIES C Power connector	408
	SERIES D Power connector	410
	SERIES S Power connector	412
	Tools, accessories	414
• •	Glands	416
Strain Relief		425
=#rij==	Chainfix steel clamps Adjustable with hexagon socket	428
III af	Chainfix Clips Snap-on strain relief device	430
****	Chainfix Nugget Strain relief for cables	
500	Strain relief separator Separator with integrated teeth	
imni	Tiewrap plates Bolted or clip-on	433
- PROFILE	Chainfix-tiewrap plates For C-profile, clip-on	
Note to America	igus® blocks Strain relief for hoses	435
ReadyChain [®]		437
	igus® ReadyChain® Ready-made Energy Chain Systems®	438
	igus ricady oriain ricady-made Energy oriain systems	

Chainflex®




Page

Technical Data and Schedules/user information/contact

Designing with igus®	
Cables and Hoses – General rules for cables and hoses in Energy Chains®	450
Cables and Hoses – Separation in Energy Chains®	451
Cables and Hoses – Further information on the separation of cables	452
Electrical Round Cables	453
Electrical Round Cables - Information on assembly and strain relief of electrical round cables	454
Pneumatic hoses	455
Data and Schedules	
DIN 47100 colour code/Copper wire dimensions according to Anglo-American AWG numbers	456
Calculation of the copper surcharge	456
Load-Carrying Capacity of Cables	457
Electrotechnical data	458
Chemical resistance	464
Informations	
The General Conditions	466
User information, Disclaimer, KTG, Product illustrations	466
Technical notes	466
Approbation and Approvals	467
Configure and order cables online, igus® & eplan	468
More igus® products	470
igus® at www.igus.eu	471
Table of contents according to part number	472
According to industries	478
Previous product numbers CF211/CF11.D	482
Contact igus®	
Fax – Customer-specific cables for Energy Chain Systems®	484
Fax – System Planning	485
Fax – Harnessing	486
Fax – Order	487
igus® worldwide	492
Cive us vous applicies. Catalogue improvement	
Give us your oppinion - Catalogue improvement	Cover (beek)
Definition of the icons used in the catalogue	Cover (back)
Chainflex® cables classification	Cover (ahead)
	,

How to use the catalog: Chainflex® Cables

Cores stranded in Layers Picture 1: Chain-Extruded, non-tensionproof centre element suitable cable stranded in layers Single-wire bundles with short pitch lengths Center element for high tensile stresses ghly abrasion Picture 2: resistant, gusset-filled extruded Litz wire and iacket core structures Total shield with of a Chainflex® cable optimized braiding angle Picture 3: igus® stranding in bundles around center cord Gusset-filled inner jacket element for stresses

Chainflex®...

The tricks and ingenious features of...

From the customer's point of view, a flexible energy supply system only needs to function properly. However, this demand presupposes the perfect operation of all components, including the cables being used in this system. And this is exactly where problems came up in the early 1980s. Due to constantly – and frequently even tremendously – increasing loads resulting from the application of automation technology, guided cables often failed although the energy supply system itself was functioning perfectly. In extreme cases, failures caused by "corkscrews" and core ruptures brought the entire production process to a standstill and resulted in high costs.

In order to find a solution to this unsatisfactory situation for its customers, igus® decided to take the initiative. As the first company worldwide, igus® began to develop complete Energy Chain Systems®. Chainflex® cables and Energy Chains® are now being offered as a delivery from a single source and with a system guarantee depending on the application in each case. Based on the increasing know-how gained since 1989 and on the very sophisticated series of tests that have been conducted since then, design principles were and are still being created that help prevent machine downtimes in factories throughout the world today.

How can "corkscrews" be prevented?

Here, the term "corkscrew" does not refer to a useful instrument for wine connoisseurs. Instead, it refers to the permanent deformation of guided, moved cables caused by excessive stressing – which, in most cases, results in core rupture almost immediately afterwards. How does this happen? How can "corkscrews" be prevented? An important factor here – in addition to a sensible design of the total Energy Chain System® – is the construction of the guided cables. Basically speaking, a clear distinction can be made between cables stranded in bundles and cables stranded in layers (see picture 4).

Properties of stranding in layers

Stranding in layers is significantly easier to produce and is therefore offered on the market in so-called "chain-suitable" cables at low cost. But what appears to be tempting at first glance can quickly turn into an expensive mistake when a "corkscrew" immobilizes the system being operated with these cables. How do these problems arise? A look at the cable structure can be quite helpful (see picture 1).

In the case of stranding in layers, the cable cores are mostly stranded more or less firmly and relatively long in several layers around a center and are then provided with a jacket extruded to the form of a tube. In the case of shielded cables, the cores are wrapped up with fleece or foils. But what, for example, happens to a similarly structured 12-core cable during normal operation?

The bending process compresses, in the movement of the core, the inner radius of the cable and stretches the core in the outer radius. Initially, this works quite well because the elasticity of the material is still sufficient. But very soon, material fatigue causes permanent deformations, and then, due to excursion from the specified paths, the cores make their "own compressing and stretching zones": The corkscrew is created, then followed rather quickly by core ruptures most of the time.

lasts or your money back!

...the Chainflex® design and why we feel so confident about this design

Stranding in bundles tried and tested expensively and efficiently millions of times since 1989

Stranding in bundles eliminates these problems by means of its very sophisticated, multiply stranded internal structure. Here, the litz wires are stranded with a special pitch length first and then the resulting cores are stranded into single core bundles. For large cross sections, this is done around a strain relief element. The next step is the renewed stranding of this core bundle around a tension-proof center – a genuine center cord. (see picture 2)

Due to this multiple stranding of the cores, all cores change the inner radius and the outer radius of the bent cable several times at identical spacing distances. Pulling and compressing forces balance one another around the high-tensile center cord that gives the stranded structure its necessary inner stability. Accordingly, the stranding remains stable even under maximum bending stress (see picture 3).

Picture 4: Shielded "chain-suitable" control cable after only 400.000 to-and-fro cycles with a bending factor of 10 x d

What are EMC problems and shield wire breakage?

In principle, cable shields must fulfil two tasks:

- Protecting the cables from external interferences
- Shielding any interferences before transmitting them to the outside

Both tasks are equally important because faulty signals can cause considerable consequential damage in the system itself as well as in any external systems. Furthermore, this is an especially problematic point due to the fact that incorrect shielding usually cannot be detected from outside, and this is something that makes the trouble-shooting procedure extremely difficult. How can these kinds of problems arise in the first place?

Once again, the answer is to be found in the internal structure of the cable itself: Is the shielding designed for the movements of the cable? Although it may be very easy to shield a fixed cable, it is much more difficult to guarantee the permanent shielding of a moving cable.

In the case of so-called "chain-suitable" cables, for example, the stranding bond of an intermediate layer is wrapped up with foils or fleeces. This stranding bond is supposed to guarantee the separation between the cores and the shield braid. But something that functions quite well for the fixed installation of cables is often quite insufficient in the case of moving cables. This has to do with the fact that the foils and fleeces do

Dictionary of defects

Core rupture

Failure of electric conductivity due to broken copper wires as a result of subjecting the individual cores to mechanical overload/ tensile load under constant bending stress. In most cases, the causes are incorrect litz wires and/or incorrect stranding pitch directions and lengths.

Insulation damage

Short circuits due to damage to the insulation above the conductor. The cause can be material fatigue under constant bending stress or material abrasion within the stranded structure. Single-wire breakage of the conductor or the shield braid result in perforation of the insulation.

Corkscrew

An externally detectable screw-like deformation of the entire cable due to broken copper wires as the result of subjecting the individual cores to mechanical overload/ tensile load during the bending process. In most cases, the causes are unfavorable superstructure properties (stranding in layers, missing center, loose jackets extruded to the form of a "tube") and subjecting the cables to high bending stress.

Jacket abrasion

The jacket is rubbed off down to the stranding or down to the total shield. In most cases, the causes are incorrect selection of materials and/or unfavorable extrusion processes resulting in detrimental surface properties so that abrasion is an unavoidable effect.

Jacket swelling/ jacket breakage

Jacket becomes soft and deformed or breaks until the stranding/shield can be seen. The cause can be the incorrect selection of materials with respect to the oils or other chemical substances being used.

Shielding losses/ EMC problems

Electromagnetic interferences inside or outside an electric cable. In most cases, the cause is shield wire breakage due to mechanical overload with incorrect shield braid angles. Other causes include loose braids over foils without supporting effects or very open coverings.

Chainflex®...

The tricks and ingenious features of...

not create a bond between the stranding, shield and jacket and may fall apart under stress. Consequently, the metallic shield then rubs on the insulation of the cores – short circuits are then to be expected.

But the production of the shield itself is very time-consuming and cost-intensive and may have been the reason for the use of open braid shields or even simple wire wrappings. The disadvantages are quite obvious: Open shields only possess a limited shielding effect in their moved state – motion and expansion reduce this effect even further. The type of shield is therefore an important point that is not even mentioned in some catalogues.

In its up to approx. 70% linearly and approx. 90% optically covered cables, igus® eliminates these weak points by means of an optimized internal structure. In virtually all shielded Chainflex® cables, a gusset-filled extruded inner jacket over the stranded structure is therefore used. This "second jacket" fulfils two tasks:

- It holds the stranded structure together and guides the individual cores as in a channel.
- It serves as a firm, round base for a very tight-fitting shield.

Shield wire breakage – and how this can be prevented

And even during the production of the shield, there are many things that can be done correctly – or incorrectly. Here, an important parameter is the braiding angle.

In the case of "chain-suitable" cables, a tensile load of the shield wires in the outer radius of the cable must usually be taken into account. If an unfavorable braiding angle is to be added, the tensile load increases even further and shield wire breakage is the result. The consequences range from reduced shielding effects right up to short circuits whenever the sharp wire ends penetrate through the fleeces or foils into the cores. Here, a useful tip: If, after the insulation has been stripped off, the shield can be easily pushed back over the jacket, the shield is then usually unsuitable for use in moved flexible energy supply systems! This is a problem that igus® has now solved with its direct approach:

- The shield braiding angle determined in long-term tests efficiently neutralizes the tensile forces and is therefore highly suitable for Energy Chains®.
- Due to the stable inner jacket, the shield cannot wander uncontrolled.
- The shield itself has a torsion protection effect on the stranded structure.

Jacket abrasion/ jacket breakage

Whereas defects in the internal structure are hardly detectable on the outside, jacket problems strike the eye immediately. The jacket is the first protection for the complicated internal structure. This is why broken, worn and swollen jackets are a serious quality defect. To prevent this problem, the igus® customer can select among 7 acket materials to adapt his Energy Chain® cables to suit the conditions of the respective environment.

lasts or your money back!

...the Chainflex® design and why we feel so confident about this design

Gusset-filled extruded jacket

Here, not only the material is an important factor but also the production process. In the case of the so-called "chain-suitable" cables, the jackets are usually produced extruded to the form of a tube and therefore do not provide the stranded structure with the necessary support for constant bending processes. The stranded structure can fall apart.

Therefore, igus® is the first manufacturer of Energy Chain Systems® to offer the so-called the "gusset-filled extruded" jacket.

Here, the jacket material is injected between the core stranding powdered with talc and ensures that the stranded structure does not open up and also makes sure that the cores are guided as in a channel. The special characteristic of this type of production is that the intermediate spaces, which are created between the cores during the stranding process, are completely filled with jacket material by the high extrusion pressure. As a result, the jacket material creates a channel-like guide which allows the cores to carry out a defined longitudinal movement. The jacket also provides a supporting function for the stranding.

The quality bundles of igus[®] Chainflex[®] cables

- Strain-relieving center
- Stranding in bundles
- Gusset-filled extruded inner jacket in shielded cables
- Enclosed shield braid
- Optimized shield braiding angle
- Gusset-filled extruded jacket

7basic rules for a good cable

1. Strain-relieving center

Clear space is created in the center of a cable according to the number of cores and the cross section of each cable. This center should be filled, as far as possible, with a genuine center cord (and not, as frequently the case, with fillers or dummy cores consisting of waste materials). These measures will then efficiently protect the stranded structure situated above and prevent the stranding from wandering into the middle of the cable.

2. Litz wire structure

With respect to the selection of litz wires, the maximum flexibility has proved to be the best solution. Although very flexible conductors can be made using very thin individual wires, these conductors tend toward extreme formation of kinks. Long-term series of tests provided the result of a shielded combination of single-wire diameter, pitch length and pitch direction as the best bending-resistant solution.

3. Core insulation

The insulation materials must be made so that they do not stick to one another within the cable. Furthermore, the insulation is also required to support the stranded individual wires of the conductor. Accordingly, only the highest-quality, high-pressure-extruded PVC or TPE materials that have proved their tested reliability in millions of core kilometers are then used in Energy Chain® applications.

4. Stranding

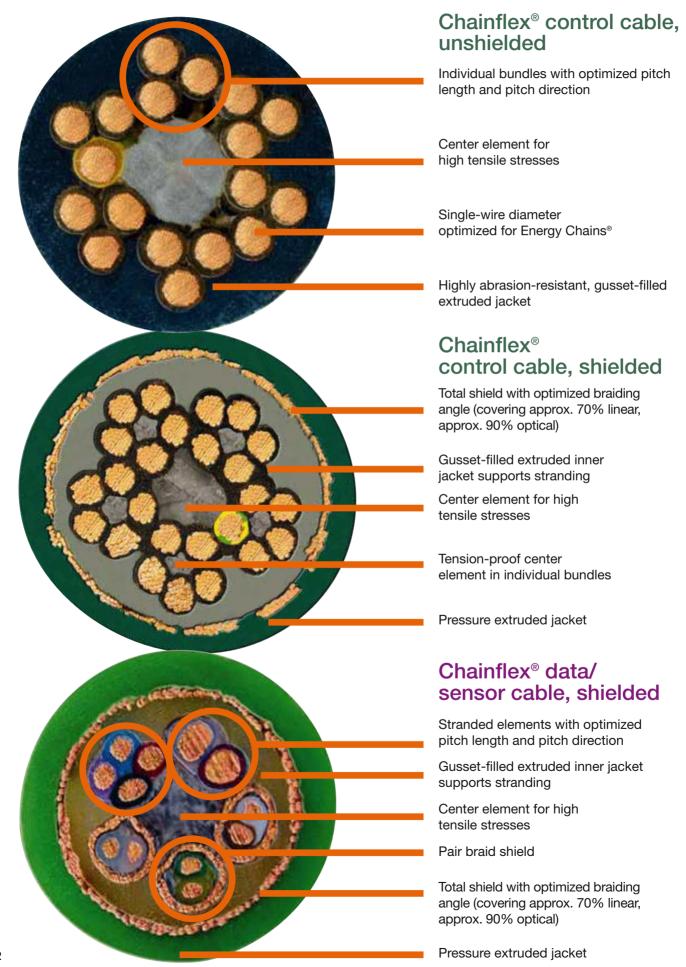
The stranded structure must be stranded around a stable, tension-proof center with an optimized short pitch length.

However, due to the insulating materials being used, this stranded structure should still be defined in mobile form within the stranding. Starting from a quantity of 12 cores, however, the method of stranding in bundles should be applied.

5. Inner jacket

A gusset-filled extruded inner jacket must be used instead of inexpensive fleeces, fillers or accessory fillers. This measure ensures that the stranded structure is efficiently guided in longitudinal direction. Moreover, the stranded structure cannot fall apart or wander off.

6. Shielding


The total shield should be made tight using an optimized shield braiding angle over an extruded inner jacket. Loose open braids or wrapped stranding reduce the EMC protection considerably and can fail very quickly due to shield wire breakage. A tight total braid shield also has a torsion protection effect on the stranded structure.

7. Outer jacket

The material-optimized outer jacket can fulfil many different requirements: From UV-resistant to low-temperature-flexible, and from oil-resistant to cost-optimized. But these outer jackets must have one thing in common: A jacket material must be highly abrasion-resistant but not be allowed to stick to anything. It must be flexible but also provide a supporting function. In any case, the jacket should also be extruded under pressure (gusset-filled).

Sectional views through

Detailed structure of igus® control, data, servo and motor

the igus® cable types

cables starting from the high-class category

Chainflex® FOC gradient fiber cable

Supporting braid made of glass-yarn-stranded GRP rods

Gel-filled fiber sheath

FOC fibers

Highly abrasion-resistant TPE jacket

Integrated torsion protection

Chainflex® servo cable, shielded

Total shield with optimized braiding angle (covering approx. 70% linear, approx. 90% optical)

Optimized single-wire diameter

Center element for high tensile stresses

Gusset-filled extruded inner jacket

Stranding with optimized pitch length and pitch direction
Pair braid shield over optimized stranded core pair

Highly abrasion-resistant pressure extruded jacket

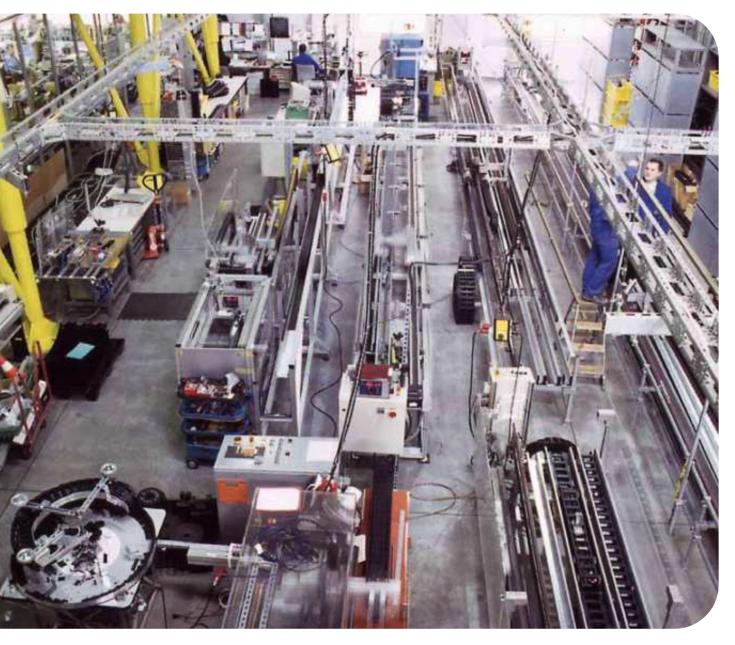
Chainflex® power cable, shielded

Total shield with optimized braiding angle (covering approx. 70% linear, approx. 90% optical)

Gusset-filled extruded inner jacket

Center element for high tensile stresses

Optimized single-wire diameter


Stranding with optimized pitch length and pitch direction

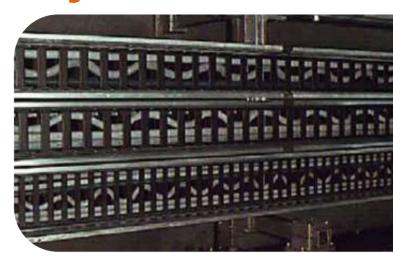
Highly abrasion-resistant pressure extruded jacket

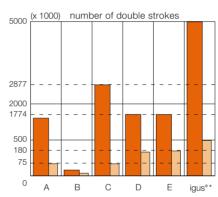
Chainflex® are the special cables for Energy Chain Systems® – tested, tested, tested and tested.

Partial view of igus® experimental laboratory – testing, testing, testing of Chainflex® cables

Purpose of every Chainflex®

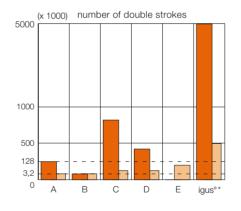
cable

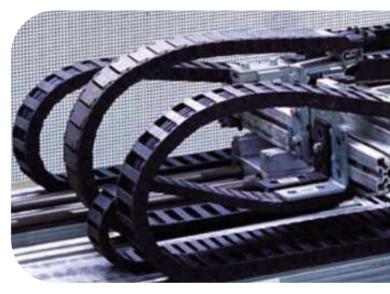

More sensitive applications with high clock cycle numbers, velocities and accelerations as well as sophisticated environmental conditions call for, especially in the field of energy management, tried-and-tested systems that are functionally efficient for a long period of time. EMC safety and the fulfillment of standards and directives such as UL, CSA, VDE, Interbus and Profibus are a necessary requirement today. After all, your automation system is supposed to function correctly non-stop and worldwide even on a low-cost basis. That's the igus® mission.


No contradiction: Good cables cost less.

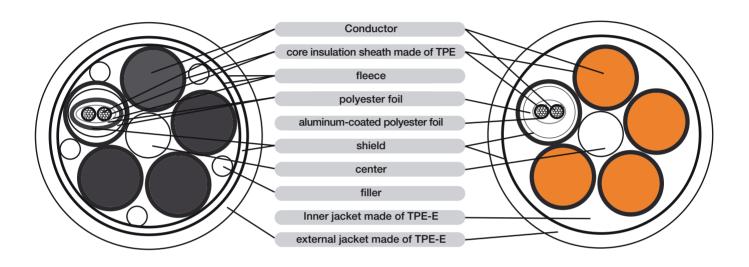
Quick availability throughout the world is a significant purchase criterion. Advantages of our cables: successful tests, presence in more than 40 countries around the world and deliverability ex warehouse. This saves time, money, storage capacity and applies to each one of our 850 cable types which you can order without any minimum quantity purchases or surcharges. Which further advantages can be included is something that depends on your specific conditions of use.

igus® tested


As a manufacturer of Energy Chains® and special Energy Chain® cables, igus® uses the possibility of testing many different types of chains and cables on a practice-oriented basis. At the company-own technical training center in Cologne, numerous series of tests are carried out on a parallel basis under the most difficult conditions. At the present time, there are more than 35 test setups with their test results being summarized in databases. This extensive, current data pool provides precise, reliable information on the actual service life and is also the basis of new product developments at the company. The test data for Energy Chains® and cables, but also for readymade systems, are, however, described in such detailed form that igus® confirms a functional guarantee for its Energy Chain Systems®.


Testing of a Chainflex® CF5: 7 x 1 in "short" and "long" distances of travel compared with other cables. CF5 with 4.3 x d bending radius

- "Short Travel"
- "Long Travel"
- * Cables OK, test abandoned.



Testing of a Chainflex® CF5: 25 x 1 in "short" and "long" distances of travel compared with other cables. CF5 with 4.3 x d bending radius

- "Short Travel"
- "Long Travel"
- * Cables OK, test abandoned.

Example 1: tested, tested, tested! Servo cable structure

Sample B with fleece and filler experimental production 4x10+(2x1.0) C

The purpose of the test is to determine the advantages of the more expensive internal jacket in shielded servo cables versus the less expensive fleece taping with fillers.

In the case of flexible shielded cables, the shield is usually separated from the composite core structure. On the one hand, this is done in order to achieve a rounder braid form and, on the other hand, the friction of the core insulation sheath against the braided shield structure is prevented due to the separation of the cores and shield. This can be achieved with an internal jacket or a fleece taping which is wrapped around the composite core structure. The internal jacket is more sophisticated and is therefore more expensive to produce. Following the twisting process, the composite core structure must run through the extruder in which the internal jacket is then put on. In contrast to this method, the fleece tape can be put on between the twisting point and the reeling-up device during the twisting process and therefore does not require an own work operation.

Product information CF27.D

► page 174

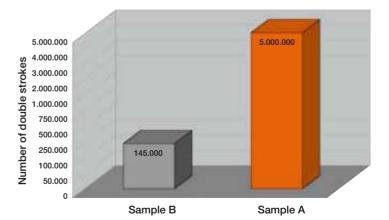
Sample A with internal jacket igus[®] Chainflex[®] CF27.100.10.02.01.D

Comparison between the igus® solution with the gusset-filled internal jacket and the fleece version with fillers

Here, the servo cables are highly flexible motor connection cables with a complete copper shield and an integrated, shielded pair of control cores. This cable type was selected due to the fact that here the problematic case of an out-of-round braid form due to the different core cross sections is a significant factor and that the various bending behaviors of the production methods are therefore emphasized.

- Sample A: CF27.100.10.02.01.D (igus® GmbH) (4x10 mm²) + (2x1.0 mm²)
- Sample B: experimental (4x10 mm²) + (2x1.0 mm²)


Both cables are provided with identical nominal cross sections and insulation materials. Cable A is equipped with an internal jacket and cable B with a fleece taping and fillers.


The experimental production (sample B) already shows the formation of a corkscrew after 145.000 double strokes. In the case of a cable, the so-called corkscrew refers to a wave-shaped deformation like the one that can be seen in the following picture on sample B.

Whereas, in the case of cable A, the internal jacket fills up the gussets and a round braid structure is created as a result, cable B requires fillers in the gussets. Like the core, the fillers also consist of filbrated polyethylene. They are easy to compress and are therefore hardly capable of taking over any supporting effects. Whereas the internal jacket, which is made of TPE, and the cable A center, which consists of cordage, hold the cores in a defined position, the cores of cable B are able to move about uncontrolled. During the bending process, a core has detached itself from the composite braid structure and has been shifted in the inner bending radius with respect to the center and on the outer bending radius with respect to the jacket. This results in corkscrew-type deformations that repeat themselves periodically with the pitch length.

Assessment

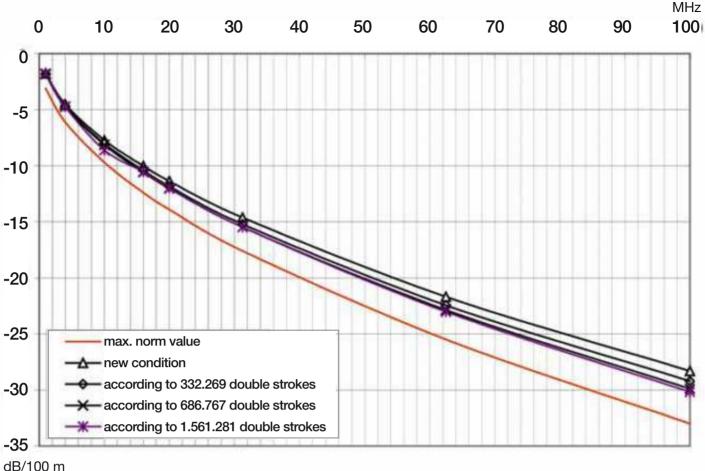
Despite the extremely low bending factor of 4.76, no signs of wear can be detected in sample A (CF27.100.10.02.01.D) even after 5 million double strokes. Sample B, on the other hand, with its fillers and fleece taping succumbs to a corkscrew formation already after 145.000 double strokes. Accordingly, the result therefore justifies the extra expenditure of the cable with the gusset-filled internal jacket.

The second section of the second section is a second section of the second section of the second section is a second section of the sectio

Sample A: CF27.100.10.02.01.D

Sample B: experimental production

Example 2: tested, tested, tested! Technical Data Properties CAT5


Alteration of the electrical transmission properties of a CAT5 cable when subjected to an application of stress with the minimum bending radius

High transmission rates of up to 100 Mbit/s place high demands on the cable structure and its materials. The use of the cables in Energy Chains® subjects these materials to additional stress and results in long-lasting alterations of the electrical properties. A CF 14.02.04.02.CAT5 cable was selected as a cable to be inspected for high transmission rates. Even when subjected to an application of stress with the minimum bending radius, the cable must also be able to meet the electrical requirements of the IEC 61156-6 standard. In the case of the CF14.02.04.02.CAT5 cable, four pairs of cores are stranded with one another, with each core pair possessing a nominal cross section of 0.25 mm². The conductor consists of bare copper wires and is surrounded by an insulation sheath consisting of foamed PE.

The following items were inspected:

- Characteristic wave impedance of single pairs
- Single-pair attenuation
- Return loss of single pairs
- Near-end crosstalk attenuation of single pairs versus one another

The test is to be carried out in order to determine whether the limit values of the IEC standard are complied with by the cable after being subjected to bending stress.

Attenuation

The maximum values of the individual attenuation for each pair of cores are specified for the corresponding nominal characteristic wave impedance in dB/100m in the DIN IEC 61156-6 standard. Accordingly, the cables are subdivided into several categories according to the transmission frequency planned to be used. For the cable being inspected, transmission frequencies of up to 100 MHz are planned to be used, which corresponds to the category 5e.

Test result

The attenuation, as a measure of the reduction of the transmitted electrical energy of a signal on the cable, remains, even after more than 1.5 million double strokes, below the specified limit value while being subjected to the application of stress of the minimum bending radius.

The characteristic electrical transmission quantities such as characteristic wave impedance, return loss and near-end crosstalk are fulfilled so that, despite applications of high mechanical stress, the electrical values of the IEC standard are complied with for a cable of the category 5.

Product information CF14 CAT5 ► page 126

Example 3: tested, tested, tested! "Millions of double strokes" in an energy chain

Profibus cables in permanentlymoving industrial use

For users, it is hard to get an overview of the cable market. Competition between cable suppliers is intensifying and manufacturers are outshining one another in their promises to "guarantee service life for cables used in energy chains". Catalogues claim ten million - or even as many as 50 million - double strokes when it comes to the service life of cables used in applications involving movement.

On taking a closer look at figures claimed, one must ask how testing was done, or how realistic tests carried out actually were (for example length of travel, test radii, etc.) in order to be able to provide such a quarantee.

Even information stating that cables are tested in accordance with VDE (Association of German electrical engineers) 0472, Part 603, test method H, is not helpful when it comes to determining the service life of a cable in energy chains, since the roller testing stand cannot provide any conclusive results and there is no VDE test for special cables in energy chains.

Picture: Sliding application as the basis of the test structure

Differences in service life

At the beginning of 2002, a test to determine the service life of profibus cables in a real application was commissioned in igus' test laboratory. The aim was to examine any differences in the service life of igus' CFBUS.001 Chainflex® cable and another market leading profibus cable. The parameters required for the test were selected on the basis of data contained in the competitor's catalogue:

Catalogue details	Test item "A" Twin-core profibus cable	Test item "B" igus® Chainflex® CFBUS.001
Cross section	(2 x AWG24)C	(2 x 0.25 mm²)C
Guaranteed lifetime	Min. 4.0 Mio. Cycles	To be determined in a test
Bending radius	> = 60 mm	85 mm
Diameter	8.0 mm	8.5 mm
Catalogue details	Issue 2002	Issue 2002

Test parameters according to catalogue data of the competition

A gliding application was chosen as a suitable test structure since profibus cable systems are usually used here because of their data integrity, particularly over long lengths of travel and long transmission distances.

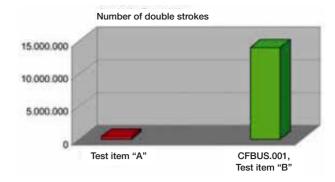
In order to be able to carry out non-destructive testing and hence achieve a large number of bending cycles in a short period of time, a genuine profibus transmission path was erected. In a PC at the fixed end of the test chain there was a profibus master insert card. A connection to a profibus slave was located on the moving end. This enabled the transmission rate to be determined with the help of a diagnosis program. Any data packets which might have been transmitted incorrectly could be indicated. The highest-possible transmission rate of 12 megabits/s was set.

The fundamental test, which commenced at the beginning of 2002 and is still in progress today, showed that only a relatively low number of cycles (420.000) resulted in the total failure of test item "A", which, according to the competitor's catalogue, should have functioned safely for at least 4.0 million cycles. Thus the real lifetime reaches only about 10% of the stated catalogue value.

On the other hand test item "B", the CFBUS.001, is still undergoing testing without any faulty data transmissions. So far, it has accomplished more than 14.0 million cycles.

Structure and materials

The main reason for the major differences in service life is the differing structural parameters of test item "A" and test item "B" (CFBUS.001), as well as the different materials used for producing the cables. The conductor insulation of the bus comprised of a foam material for all the test items. The electrical assets of this material ensured better transmission properties were achieved. A disadvantage of this material, however, was its weakness under reverse stresses. The forces which affect the bus pair should be absorbed by the element sheathing in order to alleviate the mechanical stress of the conductor insulation.


Highly-elastic element sheathing

For this reason, test item "B" (igus®) was provided with a mechanically superior, extruded TPE inner, or element, gap-filling sheathing, in order to protect the bus pair against mechanical influences during the bending procedure. The element sheathing must be highly elastic. A mechanically inferior element sheathing made of inexpensive filling material only serves to make the bus pair round, just like frequently used fillers or banding. It is not able to protect the buses from the high degree of mechanical stress present in the chain.

Tensile and compression forces which occur mainly influence those parts of the cable core in which there is a break in the element sheathing.

Test parameters	
Distance of travel:	S = 5.0 m
Speed, approx.:	V = 3.5 m/s
Acceleration, approx.:	$a = 7.5 \text{ m/s}^2$
Radius, approx.:	55 mm

The sheathing of test item "B" (CFBUS.001) is on the one hand characterized by a mechanically superior, gusset-filled TPE element jacket, which mechanically relieves the bus pair, fixes the cores in a defined position and bends. The sheathing of test item "B" (CFBUS.001) is on the one hand characterized by a mechanically superior, gusset-filled TPE element jacket,

which mechanically relieves the bus pair, fixes the cores in a defined position and bends. The extremely short pitch of the core strands and special cable also ensure that no great tensile or compression force has an effect on a long length of core.

UL and CSA approval

Chainflex® CFBUS cables are now also available for all standard field bus systems, complete with UL and CSA approval and DESINA compliance. The highly abrasion-resistant, flame-retardant TPE outer jacket is extruded onto the fully braided shield with an adjusted twisted angle in order to provide the cable with additional stability.

The bus elements braided with a particularly short strand pitch are protected by means of a gap-filling, extruded TPE inner jacket. The bus parameters required are fulfilled by means of a choice of coordinated insulating materials and production procedures.

As with all Chainflex® cables, the new standard field bus cables of the CFBUS series are now available ex stock, without any cutting costs or extra charges for small quantities.

Product information CFBUS ► page 118

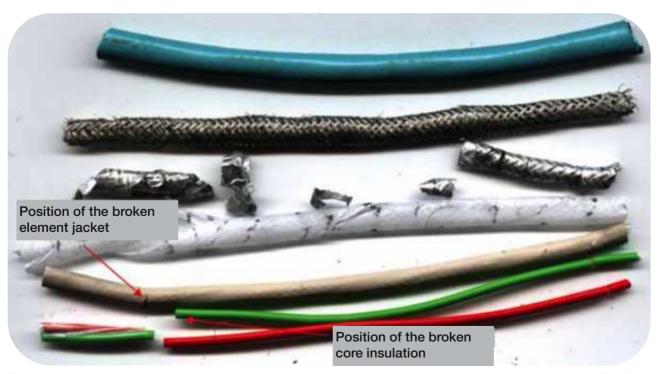
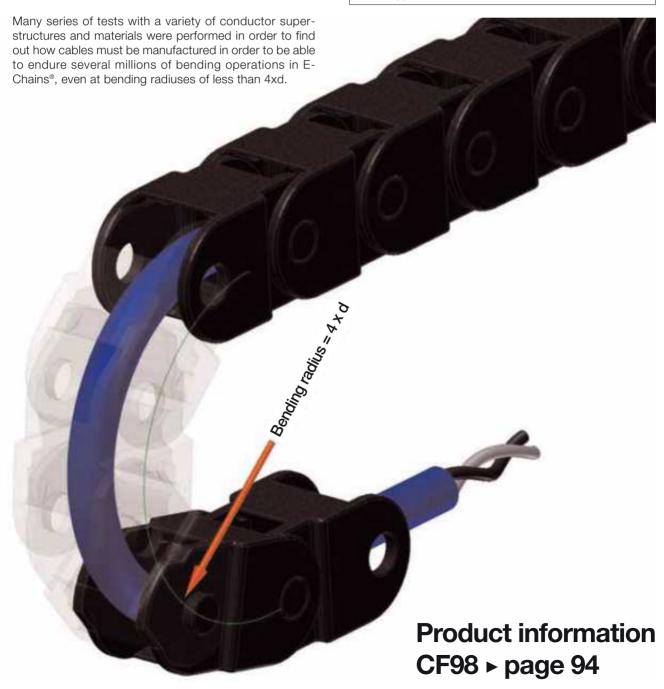


Fig. 3: A mechanically low-quality element jacket can't protect the bus pair against the high mechanical loads inside the Energy Chain®.

Example 4: tested, tested! CF98 with < 4xd!


For users of very small energy supply chains with mostly very narrow bending radiuses, the question for a suitable cable for very high stroke numbers has come up frequently in the past.

At bending radiuses of less than 5xd, copper quickly reaches its physical limits, which necessitated the search for suitable substitute conductor materials or for fundamentally different conductor superstructures.

Test set-up: Horizontal, short distance of travel

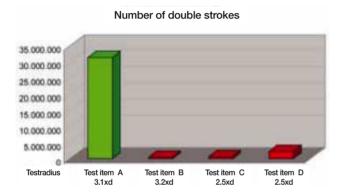
Test parameters

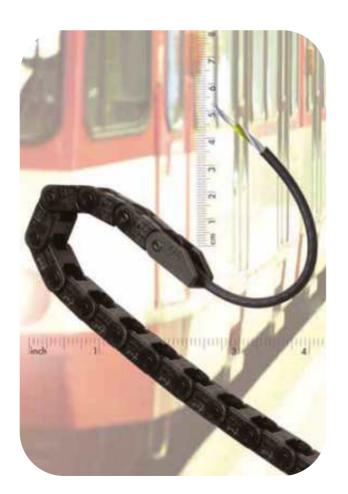
Distance of travel: S = 0.8 mSpeed, approx.: V = 1.5 m/sAcceleration, approx.: $a = 0.5 \text{ m/s}^2$ Radius, approx.: 18 mm

Test 1: Inspection of four different cable designs

Four different cable constuctions has been analyzed:

Test item A – conductor with special conductor alloy


Test item B - conductor same as test item A, but in copper


Test item C – conductor in braided structure

Test item D - conductor in stranded construction

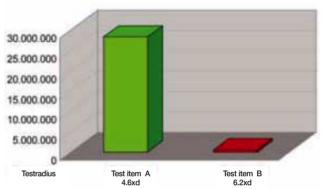
This long-term inspection, which was carried out over a period of 2 years, provided the following results:

	Number of double strokes		d [mm]	Testradius
Test item A	31.268.000	7x0.20	5.8	3.1xd = 18
Test item B	450.000	7x0.20	5.6	3.2xd = 18
Test item C	638.000	7x0.25	7.3	2.5xd = 18
Test item D	2.350.000	7x0.25	7.3	2.5xd = 18

Test 2:

Two different cable designs were tested, whereby different core numbers and cross-sections were selected in comparison with test 1:

Test item A – conductor with special conductor alloy


Test item B – conductor in copper

In this case, test item B was manufactured completely identical to test item A except for the conductor material.

The test showed that not a single case of wire breakage could be detected for test item A even after 28 million double strokes. Test item B, however, only achieved approx. 1.4 million double strokes before complete destruction of the conductor was determined. This test also demonstrates that the alloy concept clearly surpasses the life of the copper conductor by more than 19 times and achieves these extraordinary results in the mechanically critical area of very small cross-sections!

	Number of double strokes	Cross section	d [mm]	Testradius
Test item A	28.267.000	2x0.14	3.9	4.6xd = 18
Test item B	1.450.000	2x0.14	2.9	6.2xd = 18

Conductivity of alloys

However, the outstanding mechanical properties of this alloy have to do with a reduced conductivity versus copper, which can be compensated by means of slightly increased cross-sections. This means that the cross-sections mentioned in the catalog meet the electrically defined cross-sections defined using the conductivity value. The conductor diameter of the alloyed conductor increases slightly compared to the conductor diameter of a copper conductor.

This compromise results in a 10% greater external diameter for the CF98 series versus a comparable CF9 type, although the service life differences to be expected between the CF98 versus the CF9 speak for themselves and increase by a multiple factor in comparison with other so-called chain-suitable cables.

As in the case of the CF9 series, further characteristics of the Chainflex® CF98 include the highly abrasion-resistant, gusset-filled extruded TPE outer jacket, the oil resistance and the UV resistance as well as the absence of any PVC and halogen compounds. Especially in areas of application that only possess minimum construction space but also demand a large number of strokes, the igus® cable offers an increased degree of operational safety and efficiency. Areas of application are available in the semiconductor and component parts industry, in the automation sector as well as in the automotive and bank sector. New possibilities of application can also be found in automatic doors for motor vehicles and trains as well as in automatic food and self-service machines and in the packaging industry.

Example 5: tested! Dispersion and attenuation

Plastic fiber-optic cables in Energy Chains®

Plastic fiber-optic cables have been introduced for data transmission in industrial applications due to their excellent interference-proof properties against electro-magnetic fields and further advantages such as the possibility of reducing dimensions and weights. The application as flexible link lines particularly in Energy supply chains places high demands on plastic fiber-optic cables.

The most important characteristic values of a fiber-optic cable are dispersion and attenuation. Dispersion is the term used to describe the scattering of the travel time of the signal in the fiber-optic cable. In plastic fiber-optic cables this is essentially caused by the mode dispersion, which arises from the different travel times of individual light beams.

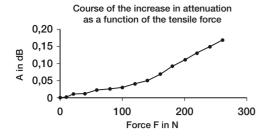
Dispersion determines important transmission properties such as bandwidth, cut-off frequency or maximum bit rate. Significant changes in dispersion could not be ascertained in any of the investigations carried out.

The industrial application of igus Chainflex®-lines with plastic fiber-optic cables in supply chains for example is therefore unproblematic with regard to changes in dispersion.

The second important characteristic property, attenuation, determines the maximum possible length of a transmission path.

The attenuation of a plastic fiber, like that of the glass fiber, is also strongly dependent on the wavelength of the light used. For this reason all the investigations were carried out with a wavelength of 666nm.

Depending on the output of the transmitter and the sensitivity of the receiver the operator has a certain "attenuation budget" available for the complete transmission path including all junction and transition regions. This attenuation budget (typical value approx. 20dB) must not be exceeded if a secure transmission of the data is to be guaranteed.


For this reason it is of great interest to the user to know whether and to what extent increases in attenuation are to be expected for his particular application so that these can be taken into account in the compilation of his own attenuation budget.

In addition to continuous bending stress, which is typical for operation in an Energy chain, further mechanical stresses that can occur during installation or operation must be taken into account. Thus, for example, relatively large tensile forces can occur when integrating the line into an Energy chain. The fixing of the lines at the ends of the energy chain using cable clamps leads to permanent transverse loads.

The test of the behaviour under transverse load is carried out following DIN VDE 0472, Part 223. Since the cable clamps only exercise pressure in an area covering a few centimetres, increases in attenuation are relatively low.

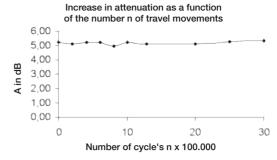

Attenuation under tensile load depends to a great extent of course on the composition of the line. Lines with integrated copper conductors or strain relief elements do not reveal a noticeable increase in attenuation until very much greater tensile forces are applied than is the case with pure fiber-optic cables.

Figure 1 represents test results for a Chainflex®-line with 6 fiber-optic cables. The length of the test sample is 1m and the maximum tensile load 250 N.

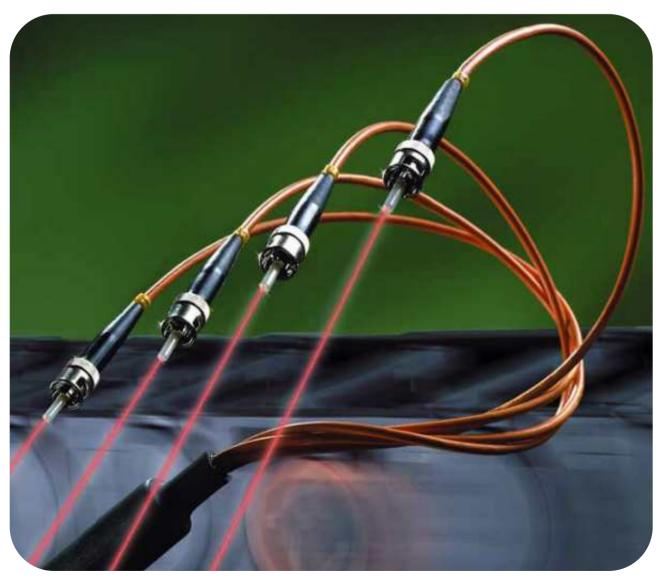

The tensile forces required to integrate fiber-optic cables in Energy Chains® are usually much lower than 250 N. The increase in attenuation was 0.17 dB at maximum tensile force and disappeared completely after the tensile load was released. Thus no effect on attenuation should be expected. In the case of plastic fiber-optic cables that are bent very often, as is the case in applications with Energy Chains®, then further influencing factors such as material fatigue, dulling of the materials, micro-cracks right through to complete fiber fracture must be feared, and their influence on attenuation can only be investigated in extensive practical tests such as those carried out by igus®.

Figure 2: Course of the increase in attenuation as a function of the number of cycles.

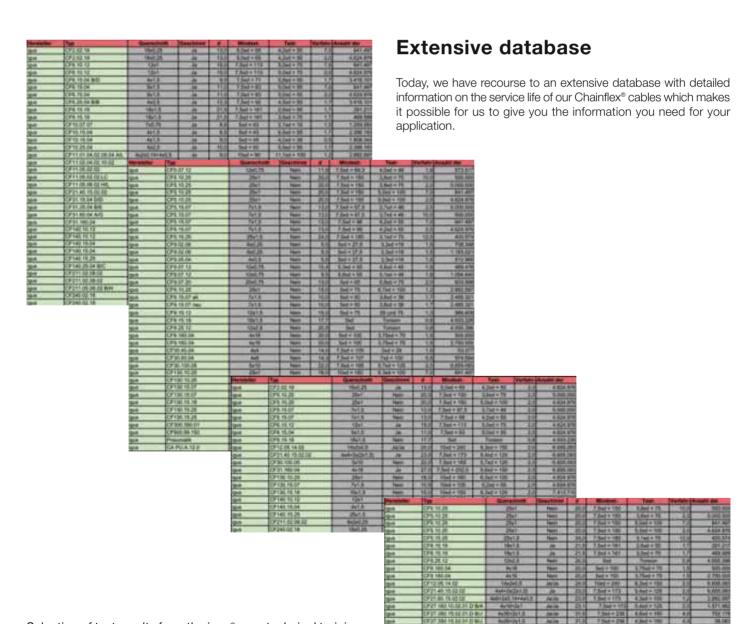
The excellent test results, shown in part here, of the Chainflex®-lines must not be taken for granted, as investigations of fiber-optic cables from other manufacturers showed, some of which even failed with complete breaks in the fibers. The investigations revealed that Chainflex® fiber-optic cables are not influenced in their function by mechanical loads such as tensile, transverse or bending stresses in Energy Chains®. Therefore they are perfectly suitable for use in the sometimes rough industrial environments for the interference-proof transfer of information between drive and control elements of machines.

Bibliography: [1] Plastic fiber-optic cables for flexible Energy supply systems: Bernfried Späth, Frank Blase

Product information FOC ➤ page 234

Example 6: tested! Selection from test results

Since 1989, we have been working on the development of electrical cables.

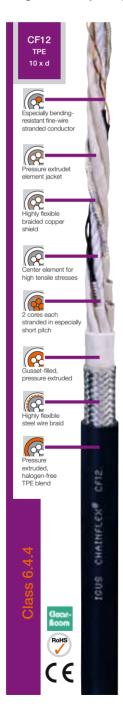

Back then, many of our customers lost their faith in the solution with energy supply systems because the cables being used frequently failed. Core breakage, "corkscrews", jacket wear and breakage of the shields were substantial reasons for these failures.

Our Chainflex® product range was then created from this situation of emergency. And due to the fact that we knew very little about cables at that time, we had only one choice:

Testing, testing, testing, testing, testing.

Accordingly, we have since been making use of a firm principle:

We almost always test our cables with a bending radius that is 30-50% less than the bending radius we mention in our catalog. We guarantee the quality requirement specified for our own products based on the production-process-accompanying sample tests that are carried out with at least 1 million reverse bending processes. During the subsequent inspection of the cable, this cable must be completely intact and, especially, none of the single wires must be broken. Newly developed types undergo considerably longer reverse bending processes in Energy Chains® before a new Chainflex® series is released.



Selection of test results from the igus®-own technical training center in Cologne for the year 2000.

Example 7: tested! EMC tests

The "electromagnetic compatibility" of Chainflex® cables

The subject of "electromagnetic compatibility (EMC)" is becoming increasingly important. For one thing, this is due to a increase in the electromagnetic interference fields in the long-distance range caused in particular by modern telecommunications and communication technology as well as in the local range caused by energy technology.

On the other hand, the requirements for data transmission are also increasing. The signals are becoming more susceptible to interference and the electromagnetic environmental influencing factors more diverse. This can be especially problematic for the coupling between cables which, as is frequently the case in energy-conducting chains, are conducted on a parallel basis over a certain distance. A heavy-current cable with interference acts as a producer of an electromagnetic interference field which, in turn, acts upon another cable, normally a signal cable, and then causes cable-conducted interference there.

Already several years ago, we therefore introduced electrical cables with fiber-optic cables made of glass that are also capable of being subjected to the mechanical stress in Energy Chains®. Even the Chainflex® cables with conventional copper conductors were tested with respect to their electromagnetic compatibility in an extensive, application-oriented test program.

An asynchronous motor, for example, was therefore connected via an unshielded heavy-current cable (Chainflex® CF30) to a frequency converter. This frequency converter with pulse width modulation becomes the generator of new spectral shares never existing previously in the primary or secondary networks. On a parallel basis with this heavy-current, Chainflex® cables were also kept available for digital signal transmission in Energy Chains®. Especially good results can be achieved here by the Chainflex® CF12 cable which was specifically designed according to the EMC aspect. This cable possesses twisted-pair cores, the pairs of which are provided with a copper shield, as well as a total shield made of a steel braid in addition. Interference over a broad frequency range can therefore be effectively prevented as a result.

The capacitive as well as the inductive coupling was also tested. In the case of the selected test conditions, it was determined that, even when the energy cables and signal cable touch one another over a longer distance, error-free data transmission is possible if a shielded Chainflex® cable is used and this shield is grounded on both sides.

In addition, tests were carried out in accordance with the existing standards on electromagnetic compatibility. These standards provide a general basis for determining the operating behavior of electrical devices that are repeatedly exposed to electrical interference. They were not introduced specifically for cables. In particular, tests with the "burst generator" were carried out. Here, fast transient interference signals are generated in pulse groups that simulate switching processes in particular. Such processes occur, e.g. during the interruption of inductive loads or during the bouncing of relay contacts. Here, too, the shielded Chainflex® cables have proved their reliability.

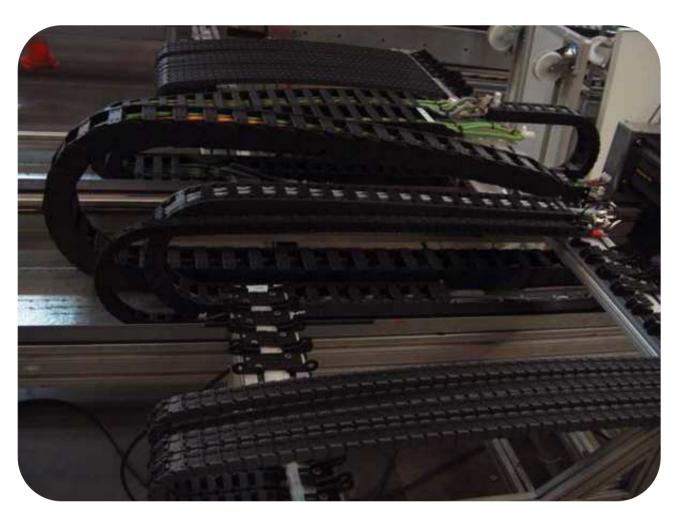
Example 8: tested, tested! Fibre optic cables – run 76.000 km

Go 76.000 km or 1.5 times round the world with Chainflex® fibre optic cables.

Users of data transmission systems (bus systems) with high data rates or long transmission lengths or even heavy EMC loads are relying on fibre optic cables more and more often.

Many users today, however, are not conscious of the fact that the advantages that apply for fibre optic cables in general are even greater when Chainflex® fibre optic cables are used in E-Chains®.

Data transmission systems on a copper basis usually have two basic disadvantages.


- 1. The maximum transmission lengths are greatly restricted by the transmission systems (between 5 and 50 m cable length depending on system and transmission frequency).
- 2. The copper-based cables used in moving energy supplies usually show an increase in attenuation values after some time at high cycle rates, which in turn have a negative effect on the maximum ranges.

The case is completely different with data transmission or bus system-independent fibre optic cables made of glass. As well as being suitable for any transmission/bus system (providing the right converters are used), they have the following advantageous properties:

- The transmission lengths are not restricted by the data transmission systems used and are – depending on the type of fibre optic cable used – several hundred metres long
- 2. With Chainflex® fibre optic cables, the increases in attenuation even at very high cycle rates in E-Chains® are so low that the values are almost non-measurable, and most of the attenuation is to be found near the plug.

The question of how greatly the attenuation behaviour of an igus® Chainflex® fibre optic cable changes has been examined using the following test set-up, which had not been concluded as the catalogue went to press (in 4/08).

Product information CFLG.2H ► page 152

Test parameters:

Test cable: igus® Chainflex® CFLG.2HG.MF.50/125

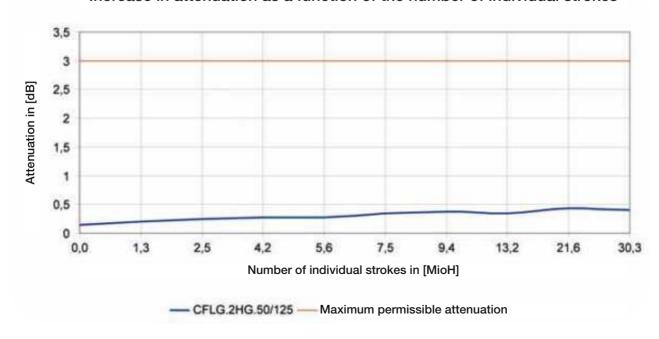
Number of fibres: 2

Type of fibre: Gradient fibre 50/125µm

Connector: 2 x ST Connector

Travel: 2 m Length of cable: 3 m

Energy chain: igus® E-Chain® series 15.015.100.0


Test radius: 11 x d

Taking into consideration that ST plugs have a mean insertion attenuation of 0.3 dB and a maximum insertion attenuation of 0.5 dB, the increase in attenuation of approx. 0.1-0.15 dB after more than 30 million movements in the E-Chain® is absolutely negligible.

Thus the cable has covered more than 76.000 km during the test.

The lightwave length considered here is 850 nm.

Increase in attenuation as a function of the number of individual strokes

Example 9: tested! Fast images

Fast images in industrial applications: USB, FireWire

The rising resolution and sampling rates of modern digital visual display systems are also inevitably accompanied by the rapid increase in the data quantities to be transmitted. Fast bus systems which find application for similar data quantities vailable in the consumer sector were taken from the industry particularly for this purpose.

ally bending resistant fine-wire tranded conductor c**FN**us

Product information
▶ page 226

Here the typical representatives are bus systems such as Fire-Wire (1394a and 1394b), USB (2.0), as well as Gigabit Ethernet or Cameral ink.

All these bus systems need special cables, which are offered in the consumer sector by numerous manufacturers at knocked-down prices.

Many of these frequently preassembled cables are developed and manufactured only for static laying or minor mechanical stressing.

Costly production losses would be inescapable, if such cables were used in industrial applications with all the known parameters such as chemicals, electro-magnetic and mechanical load, etc.

These are not only "genuine" downtimes such as wire breakage or short circuits of the litz wires, but errors can be noticed gradually through alteration of the capacitive features with a reduction of the possible transmission rates and increased dampening.

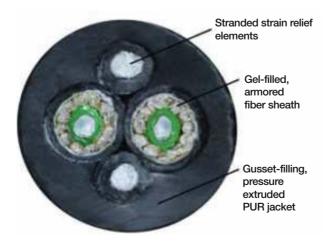
The use of substandard materials and a deficient mechanical structure in fiber optic cables can lead to murkiness of the fibers and thus also to reduced data rates.

A genuine troubleshooting in bus cables is possible only with very expensive equipment and lots of time.

Depending on the position of the damage, the errors may also occur only sporadically during operation and cannot be found once the facility stops.

The good experiences in thousands of applications with classic field bus systems, e.g. Profibus, Interbus, DeviceNet, etc., and the desire of many customers for comparable cables also for the above-mentioned high-speed bus systems led igus® to develop an own cable series, among others, with the following cable types:

- CFBUS.055 for FireWire 1394a
- CFBUS.065 and CFBUS.066 USB 2.0
- CFLG.2HG.MF. Fiber optic cable series for busindependent, long transmission stretches


The main focus in the development was on mechanically stable cable designs in order to grant the capacitive, inductive and optical features over a high number of cycles.

In the mechanical structure of the shields as well, a long service life was aimed at by material selection and special manufacturing processes.

In the industrial environment, it is not only the electrical and mechanical features that play a role, but also the resistance to a great variety of media such as oils, coolants or the like. The seasoned outer jacket material TPE has already proved its durability in many thousands of applications in other igus® cables.

All cables are subject to ample tests in the igus[®] laboratory; as there is no existing conclusive test procedure, the igus[®] engineers chose a very pragmatic method.

Cross section "Chainflex®" fiber optic cable from igus®.

Several industrial cameras traversed on a fast linear motor at a speed of 2 m/s, an acceleration of 5 m/s and a travel of 600 mm, while the bus cables moved continuously in the used E-Chain® systems.

Test rig:

10 m CFBUS.055 FireWire (1394a) tested in an E-Chain® of the B10.015.125 series with over 6 million movements with a FireWire 1394a camera.

10 m CFBUS.066 (USB 2.0) tested in an E-Chain® of the B10.015.100 series with over 3.5 million movements with a USB 2.0 camera.

10 m CFLG.2HG.MF.50/125 tested in an E-Chain® of the B10.015.075 series with over 3 million movements with a Fire-Wire 1394b camera with optical output.

Despite the long cable lengths, particularly in USB and Fire-Wire, no adverse effects on the picture quality could be determined even according to this stroke rate.

This non-scientific, but practice-oriented test distinctly proves the industrial capability of these high-speed bus cables.

This test is not complete and is continuing.

Example 10: tested! Light in the cold

Light in the cold – igus® gradient fibre glass cable in the deep freeze test

In the safe transmission of large amounts of data in bus systems at high speeds over long distances, the igus® gradient fibre glass cable of the type CFLG.G has already become a standard in numerous applications in cranes.

Insensitivity to electro-magnetic load and resistance to hard environmental influences enable the application together with energy supply cables in very long travels.

What happens in crane facilities in regions with extremely low temperatures? Does the maximum possible cable length of several hundred metres reduce through increase in dampening at low temperatures, or does the cable break in extreme applications, for example at -40 °C?

The sensitive glass fibres are conducted in a gel-filled hollow space. How does the gel behave in highly dynamic conditions and what happens in restarts after long downtimes?

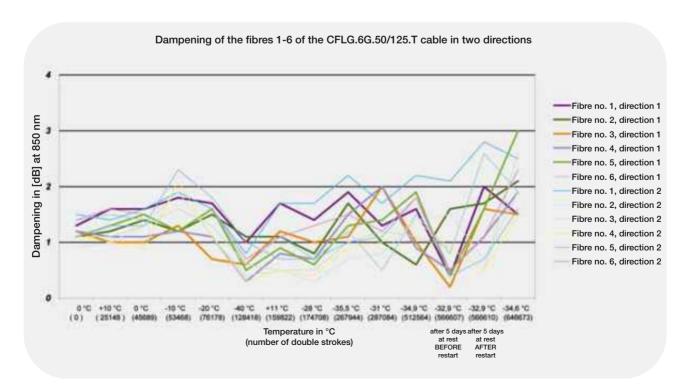
As no precise statement about this topic could be found in relevant technical journals, and as little was known particularly about the thermal features of the gel, igus®, as part of its philosophy, undertook own tests to determine the reliable specifications for applications in E-Chain® systems.

For this task, the igus® test laboratory was equipped with a freezer that can generate constant temperatures of -40 °C and a test facility was mounted for long travels up to 7 m for a speed of 1.6 m/s and an acceleration up to 6 m/s.

The igus® gradient fibre glass cable CFLG.6G.50/125.TC was tested. The cable was tested with a length of about 15 m as loop in an igus® E-ChainSystem® 3500.125.200.0 with a radius of 200 mm.

Varied and extreme temperature curves thereby served for the simulation of environmental influences, particularly when the temperature plunged during downtimes from plus degrees to -40 °C in the shortest time and the motion was restarted afterward.

Under these application conditions, the dampening of the cable also should not rise above 3 dB at 850 nm wave length. After one million double strokes, which correspond to an operational performance of about 7000 kilometres, the maximum dampening is reached and still remains significantly below 3 dB. The measurements highlighted in the diagram reveal that distinct variations in temperature combined with the constant movement in the E-Chain® have only minor effects on the dampening of the CFLG.6G.TC cable.


The noticeable high initial dampening is attributed to the plugs used and also reflects the reality here because, in practice, 90% of the cables used in automation are pluggable fibre optic cables.

Product information CFLG.G ➤ page 156

The test with the igus® cable makes it quite clear that only realistic and absolutely very expensive tests can fetch clarity about the service life of cables.

Example 11: tested! Completely turned

Chainflex® cables for E-ChainSystem® are designed for application in linear movements and their efficiency has been proved a million times.

But industrial applications and their necessary motion sequences become increasingly complex, so that special cables are more and more required for torsional movements.

The service life of the most differing constructions are yet harder to calculate for torsion applications, as no fixed sizes such as radii, travels or the like, are defined.

Shielded cables however are very difficult in torsion applications. Braided shields are generally braided in the opposite direction. Whether a cable maintains the torsional demands is very strongly dependent on the application and type of installation.

Unshielded cables, particularly all bundle-stranded Chainflex® types, could be successfully used in many torsion applications.

At igus®, the emphasis is not only on technology but also on beautifully designed products. The TRC and TRE series both received the iF-Design-Award.

In torsional movements the shield litz wires are therefore drawn in one winding direction, and the other turned in the other winding direction.

The woven arrangement and the entailing constriction of each winding direction lead to a quick breakage of the shield from the resulting expansion of the shield litz wires.

Product information CF ROBOT ► page 210

The new igus® development of a twistable, shielded single-core cable picks up on this point and ensures, due to its special design and understucture of the shield, that no forces at all or that only the smallest possible forces act on the shield wire.

As the described test clearly shows, massive service life extension can, for example, be determined when compared to a CF310.250.01.

Test rig:

The new cable CF ROBOT was tested at the igus® laboratory on a specially developed rig for torsion test.

The torsion angle thereby amounts to $\pm 270^{\circ}$ for a total cable length of about 2.5 m (tested in different versions of the Triflex® R).

Fitted for the test were:

- 3 CF ROBOT cables 037
- 3 cables of the series CF310.250.01.UL
- 3 cables of the series CF310.250.01

igus® test lab: The cables were tested in movements of ± 270 °.

The initial test sample of the CF310 with braided shield and the CFROBOT were taken after 250.000 movements with a torsion angle of \pm 270°.

The analyses (cable taken apart) were undertaken in three part areas respectively of the cable length.

In the sample illustrated in Picture 1, distinct damage to the overall shield are noticeable in the upper third of the cable taken apart.

Picture 1: damaged overall shield sample of the braid version after 250,000 movements.

The detail inspection of the shield braid shows distinct damage on the shield wires.

The analyzed samples (Picture 2) of the CF ROBOT (so far samples were taken after 250.000, 1.5 million and 3 million movements). 037 show no damage in the area of the cable or the overall shield even at above 3 million torsional movements of \pm 270°.

Picture 2: The CF ROBOT shows absolutely no damage after more than 3 million movements.

The detailed analyses (Picture 3) of the shield wires, buffer fibres, PTFE film and the cable show no apparent wear outs. The test is carried out further to determine the maximum service life of the cable.

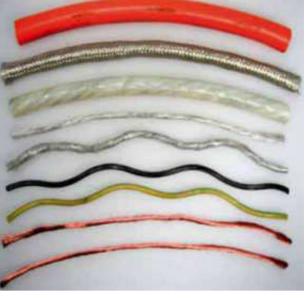
Picture 3: detail pictures of the CFROBOT after more than 3.0 million movements of $\pm 270^{\circ}$.

Example 12: tested, tested, tested! Service life comparision

Regular production inspections increase the operational reliability of machines. In addition to tests performed in the igus® in-house laboratory, where new superstructural parts, materials, and customer requirements are constantly being inspected, igus® also performs production-accompanying inspections.

Next to batch tests, which immediately reveal any productionrelated defects and provide the user with maximum reliability, long-term inspections are performed again and again.

These long-term inspections, which can take up to four years – and emphasize the effort and expenditure required for such series of systematic tests – are necessary if the constantly growing market demands are to be met.


This also applies to the long-term inspection of the Chainflex® servo cable families CF21.UL and CF27.D. These servo cables, which are based on a modular system and only differ in their inner and outer jacket materials in terms of production details, were tested for more than 2.5 years at a radius of 100 mm, a travel distance of approx. 8 m, an acceleration of approx. 6 m/s², and a velocity of approx. 3.5 m/s.

A core number / cross-section combination which is widely accepted in the field of mechanical engineering but also results in failures due to the extremely asymmetric setup in the case of many normal – so-called chain-suitable – cable super-structural parts was deliberately selected.

CF21.UL: overall stranding including the outer jacket without damage

CF27.D: overall stranding including the outer jacket without damage

CF21.40.10.02.01.UL: after more than 10 million bending movements, no shield wire breakages

CF27.40.10.02.01.D: after more than 10 million bending movements, no shield wire breakages

Deliberately non-conforming chain filling in order to simulate a real application.

The test items, CF21.40.10.02.01.UL ($4x4 \text{ mm}^2 + 2x1.0 \text{ mm}^2$), and CF27.40.10.02.01.D ($4x4 \text{ mm}^2 + 2x1.0 \text{ mm}^2$), which were constantly monitored electrically during the test phase, were tested in continuous operation in a real chain-equipped system.

Result:

After more than 10 million individual strokes, the cables were disassembled into their individual parts and inspected. As can also be seen in the section photos, it was not possible to determine any wire breakages on the individual conductors or any changes on the insulations.

Only slight traces of abrasion on the outer jacket – which cannot result in any limitation of functions – also show that the cable has completed a large number of strokes.

Summary:

The design philosophy, with gusset-filling extruded inner jacket and pressure-extruded outer jacket, clearly shows the long service life and definite advantages of these cables versus the commonly used cables most of which are designed with fillers and tapes.

Product information CF21.UL ➤ page 160 CF27.D ➤ page 174

Example 13: tested live! Container crane at 50 m travel distance

In the crane engineering industry, energy supply systems prove their technical and economic strengths more and more frequently. Flexibility, variability, and space-saving installation are only a few of the most important criteria. An important building block of an energy supply system has to do with the cables. Here, users expect a high degree of operational reliability.

In the Chainflex® laboratory, igus® cables undergo constant tests which can be used to obtain important information on the service life of a cable and to derive improvements for the future structural design of the cable.

However, the situation becomes very exciting if you get the rare opportunity to remove cables from their real, tough applications and can inspect them.

Current inspection

The Chainflex® cable CF9.60.05 has been used in container cranes for many years; in the case presented here with a total travel distance of approx. 47 m. An inspection contract commissioned by the owner-operator was to present a performance balance sheet after more than 40.000 chain kilometres and determine the date from which the next preventive maintenance work for the other equipment should be taken into account.

Following the removal of the CF9.60.05, inspections were performed with the following objectives:

- 1. outer jacket, abrasion behaviour, other damage:
- 2. overall stranding, insulation behaviour of the individual cores;
- litz wire structural design, number of any possibly individual broken wires which might be an indication of an early failure of the entire cable.

An igus® energy supply system with a length of approx. 26 m in a stainless steel trough with middle band support.

The Energy Chain System® was filled with many different igus® Chainflex® cables, e.g. the CF9.60.05

Result regarding 1:

No or only barely measurable traces of abrasion could be detected on the highly abrasion-resistant TPE outer jacket. This means that a failure due to abrasion or jacket breakage despite extreme environmental factors (temperature differences, UV irradiation, etc.) is not to be expected.

Result regarding 2:

The overall stranding structure showed – due to the gusset-filling extruded outer jacket – no indications of fatigue and had not changed in its pitch length.

Due to the large share of talc, no abrasion was determined between the TPE-insulated cores. The high-voltage tests also did not show any age-related changes.

Result regarding 3:

The cable was opened all the way to the copper conductor in the most stressed section of the radius.

Here too, after more than 40.000 km, the inspection of the individual wires also showed no fatigue breakages which would indicate an early failure of the cable.

To sum up, it can be said that this cable, which was used in a real crane application in the second trolley of an STS crane, is still completely intact even after more than 40.000 km and that preventive repair work is not required.

An igus® energy supply system with an approx. length of 26 m in a stainless steel trough with middle band support.

The individual elements of the CF9 from the cable piece dissected for the test setup.

A close-up of the completely intact copper conductor. The inspection performed over the entire length shows that the conductor is still completely intact and does have any individual wire breakages.

Product information CF9 ► page 78

Example 14: tested! Comparison of sheathing materials in different oils

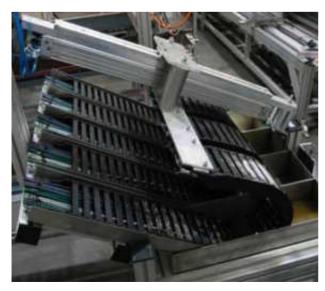
For years now, specially developed tests tailored to the individual requirements of igus® customers have been used to obtain more meaningful results than would be conceivable if standard tests were used.

The relatively generalised terms such as "oil-resistant" or "coolant-resistant" are little help in making the right selection in terms of sheathing material to be used for an application with oil, lubricant or coolant influence.

Alongside the generally applicable tests according to e.g. DIN EN 60811-2-1 and IEC 60811-1-1, "everyday application conditions" are simulated as realistically as possible in a test set-up specially matching our customers' requirements. Thus, for example, the test samples are mounted in an energy chain that moves into an "oil bath" and then back out of it again.

There is direct and alternating contact between the outer sheath and the medium to be tested and the air surrounding the energy chain or cable – just as in a real application.


After a test duration to be freely chosen or defined according to igus® standard, the test samples can be tested in terms of changes in material characteristics e.g. by comparing material strength, elongation at tear and swelling with the values noted before the test started.


This way, customers do not only get a statement referring to the different resistance of the various materials.

In contrast to the material ageing otherwise common following the above-mentioned standards, an estimation of service life in the E-Chain® application is also possible.

If the test samples – such as the external cables depicted – do not achieve the prescribed test duration, we advise against use in the respective application.

Cracks in the outer sheathing of materials from competitors caused by the "use of oil" in E-Chains®.

Example 15: tested! Completely twisted, take two.

The "torsion-resistant" requirement for cables for energy chains is not new, but is seldom defined exactly. So how is a statement such as "This cable is torsion-resistant up to $\pm 180^{\circ}$!" to be evaluated? This makes it all the more important to be able to deliver comparable and meaningful test results.

In order to satisfy this requirement, the "torsion test bench" was developed according to igus® standard. Here, various cable types are twisted to a prescribed cable length of 1 metre, which also corresponds to the distance between the fixed points.

The degree of torsion can be freely chosen, and is defined individually according to the requirement made on the test specimen, whereby the test standard is ± 180 °.

After a prescribed number of double strokes or a negative electrical or mechanical test result, the respective test specimen is dissected, and the type and position of any damage can be determined exactly.

The first Chainflex® CFROBOT types were developed to series maturity on the basis of this igus® standard test.

Product information CFROBOT ► page 210

The "torsion test bench" especially developed according to the igus® standard.

Chainflex types

Chainflex® cable	Jacket	Shield	Minimum bendii radius, moved [factor x d]	Temperatur moved from/to [°C]	Approvals and standards	Oil-resistant	Torsion resistan	v max. [m/s] unsupported	v max. [m/s] gliding	a max. [m/s²]	Page
Control cal	oles										
CF130.UL	PVC		7,5-10	-5/ +70	CE 💖 🤃 🙉 us		~	3	2	20	54
CF140.UL	PVC	~	7,5-15	-5/ +70	CE 💖 🤃 🙉			3	2	20	58
CF5	PVC		6,8-7,5	-5/ +70	(€ 💖 🔤 🤃 🙉 us	~	~	10	5	80	62
CF6	PVC	~	6,8-7,5	-5/ +70	(€ 💖 🔤 🤃 🙉 us	V		10	5	80	66
CF77.UL.D	PUR		6,8-7,5	-35/ +80	((💖 (🖹 🔼 🛂	~	~	10	5	80	70
CF78.UL	PUR	~	6,8-7,5	-35/ +80	(😌 🤃 🙉 us	V		10	5	80	72
CF2	PUR	~	5	-20/ +80	(() () Alu	V		10	5	80	74
CF9	TPE		5	-35/ +100	CE ROHS	~	~	10	6	100	78
CF10	TPE	~	5	-35/ +100	CE ROHS	~		10	6	100	82
CF9.UL	TPE		5	-35/ +100	CE 🚾 💞 🖰 Alus	V	~	10	6	100	86
CF10.UL	TPE	~	5	-35/ +100	(€ 🔤 🍼 🤃 🗛 🗷	~		10	6	100	90
CF98	TPE		4	-35/ +90	(€ 🔤 💖	~	~	10	6	100	94
CF99	TPE	~	4	-35/ +90	C € 🔤 💖	~		10	6	100	96

PVC Control cable Chainflex® CF130.UL

- for medium load requirements
- PVC outer jacket
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max. unsupported/gliding

a 3 m/s, 2 m/s

a R

a max.

20 m/s²

Travel distance

Freely suspended travel distances and for gliding

-20 °C to +70 °C, minimum bending radius 5 x d

-5 °C to +70 °C, minimum bending radius 7.5 x d with < 10 m

travel; minimum bending radius 10 x d with ≥ 10 m travel

applications up to 50 m, Class 2

Nominal voltage

Number of cores < 12: 300/500 V

Number of cores < 12 (0.25-0.34): 300/300 V

Number of cores ≥ **12:** 300/300 V

(following DIN VDE 0245)

Testing voltage

2000 V (following DIN VDE 0281-2).

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

Conductor

(following PV 3.10.7 – status 1992). Fine-wire stranded conductor consisting of bare copper

Core insulation

wires (following EN 60228).

Mechanically high-quality TPE mixture.

Core stranding

Number of cores < 12: cores stranded in a layer with short pitch length.

Number of cores \geq 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially low-torsion structure.

Core identification

Cores < 0.5 mm²: colour code in accordance with DIN 47100 Cores ≥ 0.5 mm²: cores black with white numerals, one

core green/yellow.

Outer jacket

Low-adhesion mixture on the basis of PVC, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282 Part 10)

Colour: gray (similar to RAL 7001)

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CF130.UL 7.5-10xd

+49-2203-96 49-222 Tel. +49-2203-9649-0

UL/CSA Style 10493 and 20200, 300 V, 60 °C

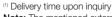
CEI Following CEI 20-35

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Typical application area

- for medium load requirements
- without influence of oil
- preferably indoor applications
- especially for freely suspended travel distances and for gliding applications up 50 m
- wood/stone processing, packaging industry, supply system, handling, adjusting equipment



- for medium load requirements
- PVC outer jacket
- flame-retardant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF130.02.03.UL	3 x 0.25	4.5	8	24
CF130.02.04.UL	4 x 0.25	5.5	10	37
CF130.03.02.UL	2 x 0.34	4.5	7	33
CF130.03.05.UL	5 x 0.34	5.5	17	48
CF130.05.02.UL	2 x 0.5	5.5	10	40
CF130.05.03.UL	3 G 0.5	6.0	14	55
CF130.05.04.UL	4 G 0.5	6.5	19	60
CF130.05.05.UL	5 G 0.5	7.0	24	65
CF130.05.07.UL	7 G 0.5	8.0	34	100
CF130.05.12.UL	12 G 0.5	9.5	55	116
CF130.05.18.UL	18 G 0.5	12.0	90	158
CF130.05.25.UL	25 G 0.5	13.5	126	222
CF130.07.02.UL	2 x 0.75	6.0	15	50
CF130.07.03.UL	3 G 0.75	6.5	22	60
CF130.07.04.UL	4 G 0.75	7.0	29	80
CF130.07.05.UL	5 G 0.75	7.5	36	90
CF130.07.07.UL	7 G 0.75	8.5	50	130
CF130.07.12.UL	12 G 0.75	10.5	81	149
CF130.07.18.UL	18 G 0.75	13.0	121	214
CF130.07.25.UL	25 G 0.75	15.5	167	303
CF130.10.02.UL	2 x 1.0	6.0	19	50
CF130.10.03.UL	3 G 1.0	7.0	29	75
CF130.10.04.UL	4 G 1.0	7.5	39	90
CF130.10.05.UL	5 G 1.0	8.0	48	110
CF130.10.07.UL	7 G 1.0	9.5	68	170
CF130.10.12.UL	12 G 1.0	11.5	108	185
CF130.10.18.UL	18 G 1.0	14.0	161	263
CF130.10.25.UL	25 G 1.0	17.0	224	371
CF130.15.02.UL ⁽¹⁾	2 x 1.5	7.5	29	70
CF130.15.03.UL	3 G 1.5	7.0	44	90
CF130.15.04.UL	4 G 1.5	8.0	58	120
CF130.15.05.UL	5 G 1.5	9.5	72	140
CF130.15.07.UL	7 G 1.5	10.5	101	210
CF130.15.12.UL	12 G 1.5	13.0	162	263
CF130.15.18.UL	18 G 1.5	16.5	242	386
CF130.15.25.UL	25 G 1.5	19.5	350	541

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

CF130.UL 7.5-10xd

Control cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

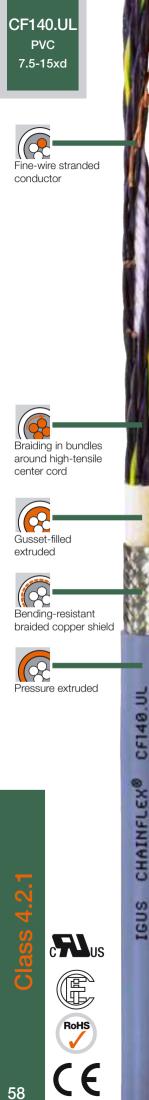
Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CF130.25.03.UL	3 G 2.5	8.5	72	116
CF130.25.04.UL	4 G 2.5	9.5	96	180
CF130.25.07.UL	7 G 2.5	13.0	168	350
CF130.25.12.UL	12 G 2.5	16.0	265	406
CF130.40.03.UL	3 G 4.0	11.0	115	200
CF130.60.04.UL	4 G 6.0	13.5	230	360
CF130.60.05.UL	5 G 6.0	15.0	288	418

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF130.05.02.UL - in your desired length (0.5 m steps) CF130.UL Chainflex® series .05 Code nominal cross section .02 Number of cores

Please use www.chainflex.eu/en/CF130 for your online order.



Delivery time 24h or today*

Delivery time means time until shipping of goods

Chainflex® CF130.UL for woodworking. E-Chain®: E4/light

PVC Control cable Chainflex® CF140.UL

- for medium load requirements
- PVC outer jacket
- shielded
- flame-retardant

Temperature range

moved

Temperature range

fixed v max.

unsupported/gliding

-5 °C to +70 °C, minimum bending radius 7.5 x d with < 10 m travel; minimum bending radius 15 x d with ≥ 10 m travel

-20 °C to +70 °C, minimum bending radius 7.5 x d

3 m/s, 2 m/s

a max.

20 m/s²

Travel distance

Freely suspended travel distances and for gliding

applications up to 50 m, Class 2

Nominal voltage

Number of cores < 12: 300/500 V Number of cores ≥ 12: 300/300 V

(following DIN VDE 0245)

Testing voltage

2000 V (following DIN VDE 0281-2).

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Conductor

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Fine-wire stranded conductor consisting of bare copper

wires (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Core stranding

Number of cores < 12: cores stranded in a layer with short pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially low-torsion struc-

Core identification

Cores < 0.5 mm²: colour code in accordance with DIN 47100

Cores ≥ 0.5 mm²: cores black with white numerals, one core green/yellow.

Inner jacket

PVC mixture adapted to suit the requirements in Energy Chains®.

Overall shield

Bending-resistant, tinned braided copper shield. Coverage approx. 55% linear, approx. 80% optical.

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CF140.UL 7.5-15xd

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Outer jacket Low-adhesion mixture on the basis of PVC, adapted to suit the requirements in Energy

Chains® (following DIN VDE 0282 Part 10).

Colour: gray (similar to RAL 7001)

UL/CSA Style 10493 and 20200, 300 V, 60 °C

CEI Following CEI 20-35

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC

Typical application area

- for medium load requirements
- without influence of oil
- preferably indoor applications
- especially for freely suspended travel distances and for gliding applications up 50 m
- wood/stone processing, packaging industry, supply system, handling, adjusting equipment

Class 4.2.1

PVC Control cable Chainflex® CF140.UL

- for medium load requirements
- PVC outer jacket
- shielded
- flame-retardant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CF140.02.12.UL	(12 x 0.25)C	10.0	69	111
CF140.03.05.UL	(5 x 0.34)C	8.0	42	80
CF140.05.03.UL	(3 G 0.5)C	8.0	37	87
CF140.05.05.UL	(5 G 0.5)C	9.0	52	130
CF140.05.18.UL	(18 G 0.5)C	13.5	130	232
CF140.05.36.UL	(36 G 0.5)C	20.0	273	493
CF140.07.03.UL	(3 G 0.75)C	8.5	48	90
CF140.07.04.UL	(4 G 0.75)C	9.0	57	130
CF140.07.05.UL	(5 G 0.75)C	9.0	66	150
CF140.07.07.UL	(7 G 0.75)C	10.5	84	170
CF140.07.12.UL	(12 G 0.75)C	13.0	130	220
CF140.07.18.UL	(18 G 0.75)C	15.0	179	289
CF140.07.25.UL	(25 G 0.75)C	17.5	256	414
CF140.10.03.UL	(3 G 1.0)C	8.5	44	130
CF140.10.04.UL	(4 G 1.0)C	9.5	55	150
CF140.10.05.UL	(5 G 1.0)C	10.0	77	170
CF140.10.07.UL	(7 G 1.0)C	11.5	107	200
CF140.10.12.UL	(12 G 1.0)C	1 3.5	162	243
CF140.10.18.UL	(18 G 1.0)C	16.5	227	407
CF140.10.25.UL	(25 G 1.0)C	18.5	322	481
CF140.15.03.UL	(3 G 1.5)C	9.5	69	150
CF140.15.04.UL	(4 G 1.5)C	10.0	89	180
CF140.15.05.UL	(5 G 1.5)C	11.0	105	220
CF140.15.07.UL	(7 G 1.5)C	12.5	135	260
CF140.15.12.UL	(12 G 1.5)C	14.5	215	407
CF140.15.18.UL	(18 G 1.5)C	18.5	339	467
CF140.15.25.UL	(25 G 1.5)C	22.0	480	703
CF140.25.04.UL	(4 G 2.5)C	12.0	174	250

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF140.10.04.UL – in your desired length (0.5 m steps)

CF140.UL Chainflex® series .10 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF140 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

eplan download, configurator, PDF catalogues, lifetime ...

CF140.UL 7.5-15xd

Control cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

CF140.UL for automatic feeder units. E-Chain®: Easy Chain®

PVC Control cable Chainflex® CF5

- for high load requirements
- PVC outer jacket
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max. unsupported/gliding

-5 °C to +70 °C, minimum bending radius $6.8 \times d$ with < 10 m travel; minimum bending radius 7.5 x d with ≥ 10 m travel

-20 °C to +70 °C, minimum bending radius 4 x d

10 m/s, 5 m/s

a max.

80 m/s²

Travel distance

Freely suspended and gliding travel distances up to 100 m,

Class 3

UV-resistant

Medium

Nominal voltage

300/500 V (following DIN VDE 0245).

Testing voltage

2000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1),

Class 2

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

(following PV 3.10.7 - status 1992).

Silicon-free

Free from silicon which can affect paint adhesion

Conductor

Fine-wire stranded conductor consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality PVC mixture (following DIN VDE

0207 Part 4).

Core stranding

Number of cores < 12: cores stranded in a layer with short pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially low-torsion struc-

Core identification

Cores < 0.5 mm²: colour code in accordance with DIN 47100 Cores ≥ 0.5 mm²: cores black with white numerals, one

core green/yellow.

Outer jacket

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the requirements in Energy Chains® (following DIN

VDE 0282 Part 10).

Colour: green (similar to RAL 6005)

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CF5 PVC 6.8-7.5xd

Control cable

ပိ

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

UL/CSA ≤ 1.5 mm²: Style 1007 and 2464, 300 V, 80 °C

≥ **2.5 mm**²: Style 1011 and 2570, 600 V, 80 °C

CEI Following CEI 20-35

CE

CE Following 2006/95/EG

RoHS

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean-Room

Clean room According to ISO Class 2, material/cable tested by IPA according to ISO standard 14644-1

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes

PVC Control cable Chainflex® CF5

- for high load requirements
- PVC outer jacket
- oil-resistant
- flame-retardant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF5.02.36	36 x 0.25	14.5	87	275
CF5.03.15	15 x 0.34	10.0	49	133
CF5.03.18	18 x 0.34	11.5	59	172
CF5.03.25	25 x 0.34	13.5	82	234
CF5.05.02	2 x 0.5	5.5	10	34
CF5.05.03	3 G 0.5	6.0	15	42
CF5.05.05	5 G 0.5	7.0	24	72
CF5.05.07	7 G 0.5	8.0	34	77
CF5.05.12	12 G 0.5	11.5	58	158
CF5.05.18	18 G 0.5	13.5	86	230
CF5.05.25	25 G 0.5	17.0	121	310
CF5.05.30	30 G 0.5	18.5	144	402
CF5.07.03	3 G 0.75	6.5	22	63
CF5.07.04	4 G 0.75	7.0	29	72
CF5.07.05	5 G 0.75	8.0	36	85
CF5.07.07	7 G 0.75	9.0	50	108
CF5.07.12	12 G 0.75	12.0	86	240
CF5.07.18	18 G 0.75	15.5	130	322
CF5.07.25	25 G 0.75	19.0	181	432
CF5.07.36	36 G 0.75	22.0	259	564
CF5.07.42	42 G 0.75	23.5	302	610
CF5.10.03	3 G 1.0	7.0	29	62
CF5.10.04	4 G 1.0	8.0	39	85
CF5.10.05	5 G 1.0	8.5	48	100
CF5.10.07	7 G 1.0	10.0	68	145
CF5.10.12	12 G 1.0	13.5	116	260
CF5.10.18	18 G 1.0	17.5	173	450
CF5.10.25	25 G 1.0	19.5	241	590
CF5.15.03	3 G 1.5	8.0	44	95
CF5.15.04	4 G 1.5	8.0	58	120
CF5.15.05	5 G 1.5	10.0	72	170
CF5.15.07	7 G 1.5	11.0	101	220
CF5.15.12	12 G 1.5	16.0	173	320
CF5.15.18	18 G 1.5	22.0	260	550
CF5.15.25	25 G 1.5	24.0	361	810
CF5.15.36	36 G 1.5	26.0	518	980
Note: The mentioned external diameter	ers are maximum values and may ter		ance limits.	

eplan download, configurator, PDF catalogues, lifetime ...

G = with earthed conductor green-yellow x = without earthed conductor

CF₅ 6.8-7.5xd

Control cable

+49-2203-96 49-222

Tel. +49-2203-96 49-0

Delivery program Part No.	Number of cores and conductor nominal cross section [mm²]	External diameter approx. [mm]	Copper index [kg/km]	Weight [kg/km]
CF5.25.04	4 G 2.5	11.0	96	200
CF5.25.05	5 G 2.5	12.0	120	250
CF5.25.07	7 G 2.5	15.0	168	340
CF5.25.12	12 G 2.5	21.0	288	667
CF5.25.18	18 G 2.5	27.5	432	970
CF5.25.25	25 G 2.5	31.5	600	1366

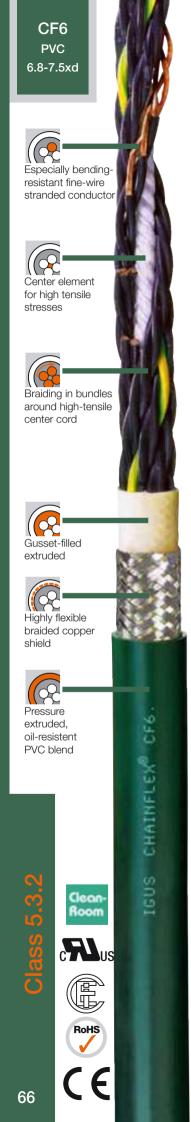
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF5.07.03 - in your desired length (0.5 m steps)

CF5 Chainflex® series .07 Code nominal cross section .03 Number of cores

Please use www.chainflex.eu/en/CF5 for your online order.


Delivery time 24h or today*

Delivery time means time until shipping of goods

CF5/CF6 for shelf control units: long travel in the longitudinal axis. E-Chain®: Series E4/00 with igus® guide trough out of steel

850 types from stock no cutting costs

PVC Control cable Chainflex® CF6

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed v max.

unsupported/gliding

-5 °C to +70 °C, minimum bending radius 6.8 x d with < 10 m travel; minimum bending radius 7.5 x d with ≥ 10 m travel

-20 °C to +70 °C, minimum bending radius 4 x d

a max.

80 m/s²

10 m/s, 5 m/s

Travel distance

Freely suspended and gliding travel distances up to 100 m,

Class 3

UV-resistant

Medium

Nominal voltage

300/500 V (following DIN VDE 0245).

Testing voltage

2000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1),

Class 2

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

Conductor

(following PV 3.10.7 - status 1992). Fine-wire stranded conductor consisting of bare copper

wires (following EN 60228).

Core insulation

Mechanically high-quality PVC mixture (following DIN VDE

0207 Part 4).

Core stranding Number of cores < 12: cores stranded in a layer with short pitch length. Number of cores ≥ 12: cores combined in bundles and stranded

together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially low-torsion structure.

Core identification

Cores < 0.5 mm²: colour code in accordance with DIN 47100 Cores ≥ 0.5 mm²: cores black with white numerals, one

core green/yellow.

Inner jacket

PVC mixture adapted to suit the requirements in Energy Chains®.

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CF6 6.8-7.5xd

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Outer jacket

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the requirements

in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: green (similar to RAL 6005)

UL/CSA ≤ 1.5 mm²: Style 1007 and 2464, 300 V, 80 °C

≥ 2.5 mm²: Style 1011 and 2570, 600 V, 80 °C

CEI Following CEI 20-35

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean room According to ISO Class 2. Outer jacket material complies with CF5.10.07, tested by IPA according to standard 14644-1

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CF6.02.04	(4 x 0.25)C	6.5	28	55
CF6.02.24 ⁽³⁾	(24 x 0.25)C	13.5	100	250
CF6.03.05	(5 x 0.34)C	7.5	34	95
CF6.05.05	(5 G 0.5)C	9.0	48	114
CF6.05.07	(7 G 0.5)C	10.5	63	142
CF6.05.09	(9 G 0.5)C	12.5	77	182
CF6.05.12	(12 G 0.5)C	13.0	93	206
CF6.05.18	(18 G 0.5)C	15.0	120	276
CF6.05.24 ⁽³⁾	(24 G 0.5)C	17.0	190	405
CF6.07.03	(3 G 0.75)C	8.5	52	110
CF6.07.04	(4 G 0.75)C	9.0	54	120
CF6.07.05	(5 G 0.75)C	10.0	73	150
CF6.07.07	(7 G 0.75)C	12.0	93	190
CF6.07.12	(12 G 0.75)C	14.0	138	264
CF6.07.18	(18 G 0.75)C	17.5	204	410
CF6.07.24 ⁽³⁾	(24 G 0.75)C	19.5	250	466
CF6.10.03	(3 G 1.0)C	8.5	61	103
CF6.10.04	(4 G 1.0)C	9.0	75	115
CF6.10.05	(5 G 1.0)C	11.0	87	170
CF6.10.07	(7 G 1.0)C	13.0	113	217
CF6.10.12	(12 G 1.0)C	15.0	171	313
CF6.10.18	(18 G 1.0)C	19.0	261	470
CF6.10.24 ⁽³⁾	(24 G 1.0)C	21.0	307	588
CF6.15.03	(3 G 1.5)C	10.0	81	155
CF6.15.04	(4 G 1.5)C	10.0	85	170
CF6.15.05	(5 G 1.5)C	11.0	106	190
CF6.15.07	(7 G 1.5)C	14.0	153	270
CF6.15.12	(12 G 1.5)C	18.0	232	411
CF6.15.18	(18 G 1.5)C	22.0	367	637
CF6.15.25	(25 G 1.5)C	23.0	492	819
CF6.25.04	(4 G 2.5)C	12.5	135	275
The Chainflex® types marked with a (3)	refer to cables that are based on a l	oundling of 4 cores a	each. Due to their e	excellent electrical properties (star-quad

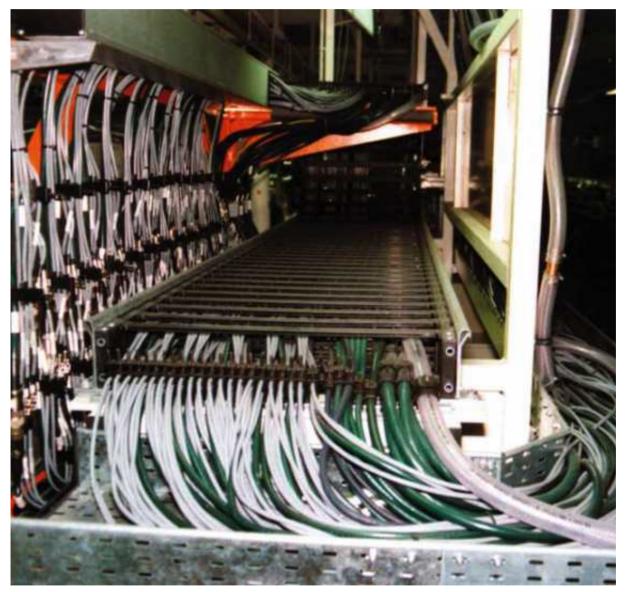
The Chainflex® types marked with a ® refer to cables that are based on a bundling of 4 cores each. Due to their excellent electrical properties (star-quad with especially minimum crosstalk), these cables can virtually be used in all cases in which otherwise twisted-pair cables are required. Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

CF6PVC
6.8-7.5xd

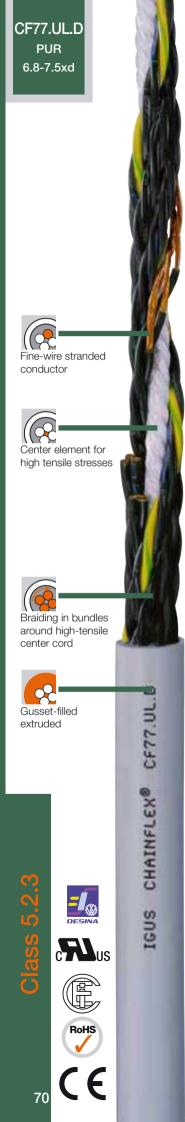
Control cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

 $\mathring{\underline{\mathbb{1}}}$


Order example: CF6.15.12 – in your desired length (0.5 m steps) CF6 Chainflex® series .15 Code nominal cross section .12 Number of cores

Please use www.chainflex.eu/en/CF6 for your online order.



Delivery time 24h or today*

* Delivery time means time until shipping of goods

CF5 and CF6 control cable (green) as well as CF211 measuring system cable (gray) in a screwing station of a motor factory. E-Chain®: System E4/00 with Chainfix Clip Strain Relief Devices

PUR Control cable Chainflex® CF77.UL.D

- for high load requirements
- PUR outer jacket
- oil-resistant and coolant-resistant
- flame-retardant
- notch-resistant
- PVC-free/halogen-free

-35 °C to +80 °C, minimum bending radius 6.8 x d with < 10 m travel distance, minimum bending radius 7.5 x d

fixed
v max.
unsupported/gliding
a max.

Travel distance

Nominal voltage

-40 °C to +80 °C, minimum bending radius 4 x d 10 m/s, 5 m/s

80 m/s²

Freely suspended and gliding travel distances up to 100 m,

Class 2 Medium

/ UV-resistant

v rooiotant

Number of cores < 12: 300/500 V

Number of cores ≥ 12: 300/300 V (following DIN VDE 0245)

2000 V (following DIN VDE 0281-2)

Testing voltage

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Class 3

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1

oil d

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992)

Following EN 50267-2-1

Conductor

Halogen-free

Fine-wire stranded conductor consisting of bare copper

wires (following EN 60228)

Core insulation Mechanically high-quality TPE mixture.

Core insulation

Core stranding

Number of cores < 12: cores stranded in a layer with short

pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially low-torsion structure.

iow-torsion structure.

Core identification

Outer jacket

Cores < 0.5 mm²: Colour code in accordance with DIN 47100.

Cores ≥ 0.5 mm²: cores black with white numerals, one core

green-yellow.

Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: gray (similar to RAL 7040) Style 10493 and 20233, 300 V, 80 °C

UL/CSA

CEI

Following CEI 20-35

CE Following 2006/95/EG

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CF77.UL.D 6.8-7.5xd

+49-2203-96 49-222 Tel. +49-2203-96 49-0

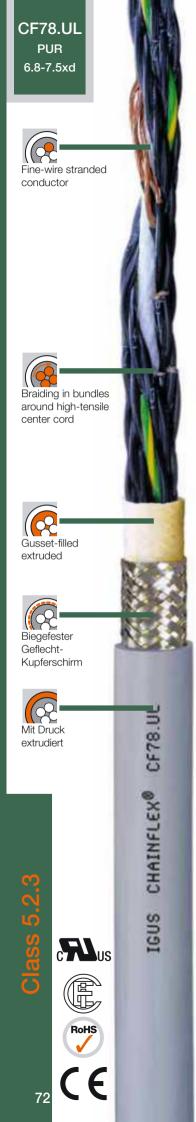
DESINA According to VDW, DESINA standardisation

Lead free

Following EU guideline (RoHS) 2002/95/EC

Typical application area

- for high load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications with average sun radiation
- especially for freely suspended and gliding travel distances up to 100 m
- Machining units/machine tools, storage and retrieval units for high-bay warehouses, packaging industry, quick handling, refrigerating sector


Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm²]	approx. [mm]	[kg/km]		
CF77.UL.02.04.D	4 x 0,25	5,5	10	34	New
CF77.UL.05.04.D	4 G 0,5	6,0	19	48	
CF77.UL.05.05.D	5 G 0,5	6,5	24	55	
CF77.UL.05.12.D	12 G 0,5	10,0	57	128	
CF77.UL.05.18.D	18 G 0,5	12,0	86	188	
CF77.UL.05.25.D ⁽¹⁾	25 G 0,5	13,5	119	244	
CF77.UL.05.30.D ⁽¹⁾	30 G 0,5	14,5	143	297	
CF77.UL.07.03.D	3 G 0,75	6,0	21	52	
CF77.UL.07.04.D	4 G 0,75	6,5	28	61	
CF77.UL.07.05.D	5 G 0,75	7,0	35	71	
CF77.UL.07.07.D	7 G 0,75	8,0	49	100	
CF77.UL.07.12.D	12 G 0,75	11,5	84	183	
CF77.UL.07.18.D	18 G 0,75	13,5	126	247	
CF77.UL.07.20.D	20 G 0,75	14,0	140	277	
CF77.UL.10.02.D ⁽¹⁾	2 x 1,0	6,0	20	52	
CF77.UL.10.03.D	3 G 1,0	6,5	29	61	
CF77.UL.10.04.D	4 G 1,0	7,0	39	75	
CF77.UL.10.05.D	5 G 1,0	7,5	49	91	
CF77.UL.10.07.D	7 G 1,0	8,5	68	112	
CF77.UL.10.12.D	12 G 1,0	11,5	116	222	
CF77.UL.10.18.D	18 G 1,0	14,5	174	321	
CF77.UL.10.25.D	25 G 1,0	17,0	240	406	New
CF77.UL.15.03.D	3 G 1,5	7,0	42	81	
CF77.UL.15.04.D	4 G 1,5	7,5	55	99	
CF77.UL.15.05.D	5 G 1,5	8,0	69	117	
CF77.UL.15.07.D	7 G 1,5	10,0	96	164	
CF77.UL.15.12.D	12 G 1,5	14,0	165	290	
CF77.UL.15.18.D	18 G 1,5	17,0	260	397	New
CF77.UL.15.25.D	25 G 1,5	19,5	360	555	New
CF77.UL.25.04.D	4 G 2,5	9,0	91	145	
CF77.UL.25.05.D ⁽¹⁾	5 G 2,5	10,5	120	179	
CF77.UL.25.07.D	7 G 2,5	12,5	168	253	
CF77.UL.40.04.D ⁽¹⁾	4 G 4,0	11,5	154	242	

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

x = without earthed conductor

rom stock no cutting costs

PUR Control cable Chainflex® CF78.UL

- for high load requirements
- PUR outer jacket
- oil-resistant and coolant-resistant
- flame-retardant
- notch-resistant
- PVC-free/halogen-free

Temperature range

moved

-35 °C to +80 °C, minimum bending radius 6.8 x d with < 10 m travel distance, minimum bending radius 7.5 x d with ≥ 10 m travel distance

-40 °C to +80 °C, minimum bending radius 4 x d

Temperature range

fixed

v max.

unsupported/gliding

a max.

80 m/s²

10 m/s, 5 m/s

Travel distance

UV-resistant

Freely suspended and gliding travel distances up to 100 m,

Class 2

Medium

Nominal voltage

Number of cores < 12: 300/500 V

Number of cores ≥ 12: 300/300 V (following DIN VDE 0245) 2000 V (following DIN VDE 0281-2).

oil 🛭

Testing voltage

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Oil

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1

Conductor

Fine-wire stranded conductor consisting of bare copper wires (following EN 60228).

Mechanically high-quality TPE mixture.

Core stranding

Number of cores < 12: cores stranded in a layer with short pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially low-torsion structure.

Core identification

Cores < 0.5 mm²: Colour code in accordance with DIN 47100. Cores ≥ 0.5 mm²: cores black with white numerals, one core green-yellow.

PUR mixture adapted to suit the requirements in Energy

Inner jacket

Chains®.

Overall shield

Coverage approx. 55% linear, approx. 80% optical.

Bending-resistant, tinned braided copper shield.

Outer jacket Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit the requirements in Energy Chains® (fol-

lowing DIN VDE 0282 Part 10). Colour: gray (similar to RAL 7040)

... no minimum order quantity

CF78.UL PUR 6.8-7.5xd

ntrol cable

Control ca

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

+ 1/

UL/CSA Style 10493 and 20233, 300 V, 80 °C

CEI Following CEI 20-35

CE CE

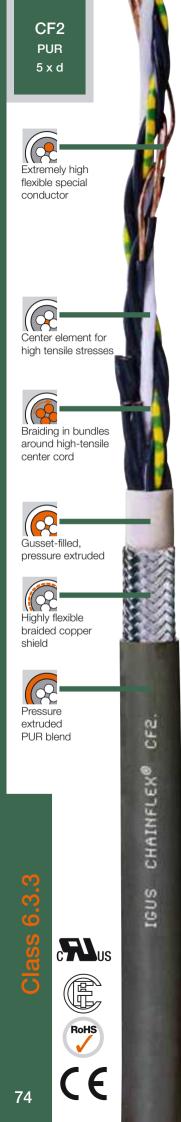
Following 2006/95/EG

s Lead free

Lead free Following EU guideline (RoHS) 2002/95/EC

Typical application area

- for high load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications with average sun radiation
- especially for freely suspended and gliding travel distances up to 100 m
- Machining units/machine tools, storage and retrieval units for high-bay warehouses, packaging industry, quick handling, refrigerating sector


Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm²]	approx. [mm]	[kg/km]		
CF78.UL.05.04	(4 G 0,5)C	8,0	32	77	
CF78.UL.05.05 ⁽¹⁾	(5 G 0,5)C	8,5	38	88	
CF78.UL.05.07 ⁽¹⁾	(7 G 0,5)C	9,5	56	117	
CF78.UL.05.09	(9 G 0,5)C	10,5	68	144	
CF78.UL.05.12 ⁽¹⁾	(12 G 0,5)C	12,5	88	198	
CF78.UL.05.18	(18 G 0,5)C	14,0	125	268	
CF78.UL.05.24 ⁽¹⁾	(24 G 0,5)C	15,5	160	334	
CF78.UL.07.03	(3 G 0,75)C	8,0	35	82	
CF78.UL.07.05	(5 G 0,75)C	9,5	57	119	
CF78.UL.07.07 ⁽¹⁾	(7 G 0,75)C	10,5	77	153	
CF78.UL.07.12	(12 G 0,75)C	13,5	125	252	
CF78.UL.07.18 ⁽¹⁾	(18 G 0,75)C	15,5	175	337	
CF78.UL.10.03	(3 G 1,0)C	8,5	48	101	
CF78.UL.10.05	(5 G 1,0)C	9,5	71	137	
CF78.UL.10.07	(7 G 1,0)C	11,0	94	179	
CF78.UL.10.12	(12 G 1,0)C	14,1	155	299	
CF78.UL.10.18 ⁽¹⁾	(18 G 1,0)C	17,0	220	412	
CF78.UL.10.25	(25 G 1,0)C	19,5	315	535	
CF78.UL.15.03	(3 G 1,5)C	9,5	65	126	
CF78.UL.15.04	(4 G 1,5)C	10,0	80	145	
CF78.UL.15.05	(5 G 1,5)C	10,5	98	172	
CF78.UL.15.07	(7 G 1,5)C	12,5	131	225	
CF78.UL.15.12	(12 G 1,5)C	15,5	215	370	
CF78.UL.25.04	(4 G 2,5)C	11,5	123	205	
CF78.UL.25.05 ⁽¹⁾	(5 G 2,5)C	12,5	150	245	
CF78.UL.25.07	(7 G 2,5)C	14,5	207	330	
CF78.UL.40.04 ⁽¹⁾	(4 G 4,0)C	15,0	189	322	

(1) Delivery time upon inquiry

 $\textbf{Note:} \ \ \text{The mentioned external diameters are maximum values and may tend toward lower tolerance limits.}$

G = with earthed conductor green-yellow x = without earthed conductor

850 types from stock no cutting costs ...

PUR Control cable Chainflex® CF2

- for maximum load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- flame-retardant
- notch-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

v max.

a max.

-20 °C to +80 °C, minimum bending radius 5 x d

Temperature range fixed

-40 °C to +80 °C, minimum bending radius 4 x d

unsupported/gliding

10 m/s, 5 m/s

80 m/s²

Travel distance

Freely suspended and gliding travel distances up to 100 m.

UV-resistant High

Nominal voltage 300/500 V (following DIN VDE 0245).

Testing voltage 2000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Class 3

Offshore

MUD-resistant following NEK 606

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

Conductor

(following PV 3.10.7 - status 1992). Fine-wire stranded conductor in especially bending-resistant

Core insulation

version consisting of bare copper wires (following EN 60228). Mechanically high-quality PVC mixture (following DIN VDE

0207 Part 4).

Core stranding

Number of cores < 12: cores stranded in a layer with short

pitch length < 0.5 mm²: PP mixture

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially

low-torsion structure.

Core identification

Cores < 0.5 mm²: colour code in accordance with DIN 47100 Cores ≥ 0.5 mm²: cores black with white numerals, one

core green/yellow.

... no minimum order quantity

CF₂ **PUR** 5 x d

Control cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Inner jacket PVC mixture adapted to suit the requirements in Energy Chains®.

Overall shield

Outer jacket

UL/CSA

Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit

the requirements in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: anthracite-gray (similar to RAL 7016)

< 0.5 mm²: Style 10467 and 20317, 300 V, 80 °C ≥ **0.5 mm**²: Style 1007 and 20317, 300 V, 80 °C ≥ 2.5 mm²: Style 1011 and 20234, 600 V, 80 °C

Following CEI 20-35

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, guick handling, indoor cranes, refrigerating sector

PUR Control cable Chainflex® CF2

- for maximum load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- flame-retardant
- notch-resistant
- hydrolysis-resistant and microbe-resistant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CF2.01.04	(4 x 0,14)C	6,0	17	40
CF2.01.08	(8 x 0,14)C	8,0	29	65
CF2.01.12	(12 x 0,14)C	9,0	49	101
CF2.01.18	(18 x 0,14)C	10,0	53	125
CF2.01.24 ⁽³⁾	(24 x 0,14)C	11,5	65	135
CF2.01.36	(36 x 0,14)C	14,0	88	200
CF2.01.48	(48 x 0,14)C	17,0	135	310
CF2.02.04	(4 x 0,25)C	7,0	24	53
CF2.02.08	(8 x 0,25)C	8,0	41	83
CF2.02.18	(18 x 0,25)C	13,0	96	190
CF2.02.24 ⁽³⁾	(24 x 0,25)C	14,0	120	220
CF2.02.48	(48 x 0,25)C	20,0	230	450
CF2.05.05 ⁽¹⁾	(5 G 0,5)C	10,5	64	170
CF2.05.07 ⁽¹⁾	(7 G 0,5)C	13,0	82	210
CF2.05.09 ⁽¹⁾	(9 G 0,5)C	15,0	97	260
CF2.05.12 ⁽¹⁾	(12 G 0,5)C	18,0	145	390
CF2.05.18 ⁽¹⁾	(18 G 0,5)C	22,0	192	520
CF2.05.24 ^(1/3)	(24 G 0,5)C	23,0	238	620
CF2.07.03 ⁽¹⁾	(3 G 0,75)C	10,0	51	140
CF2.07.04 ⁽¹⁾	(4 G 0,75)C	10,0	57	160
CF2.07.07 ⁽¹⁾	(7 G 0,75)C	14,0	102	240
CF2.07.12 ⁽¹⁾	(12 G 0,75)C	19,0	183	440
CF2.07.24 ^(1/3)	(24 G 0,75)C	25,0	302	720
CF2.10.03 ⁽¹⁾	(3 G 1,0)C	10,0	63	150
CF2.10.05 ⁽¹⁾	(5 G 1,0)C	12,0	91	200
CF2.10.07 ⁽¹⁾	(7 G 1,0)C	14,0	120	260
CF2.10.12 ⁽¹⁾	(12 G 1,0)C	20,0	213	480
CF2.10.24 ⁽¹⁾	(24 G 1,0)C	26,0	363	780
CF2.15.03 ⁽¹⁾	(3 G 1,5)C	11,0	85	190
CF2.15.07 ⁽¹⁾	(7 G 1,5)C	16,0	163	340
CF2.15.12 ⁽¹⁾	(12 G 1,5)C	23,0	289	650
(1) Delivery time upon inquiry				

⁽¹⁾ Delivery time upon inquiry

G = with earthed conductor green-yellow x = without earthed conductor

The Chainflex® types marked with a ® refer to cables that are based on a bundling of 4 cores each. Due to their excellent electrical properties (star-quad with especially minimum crosstalk), these cables can virtually be used in all cases in which otherwise twisted-pair cables are required. Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

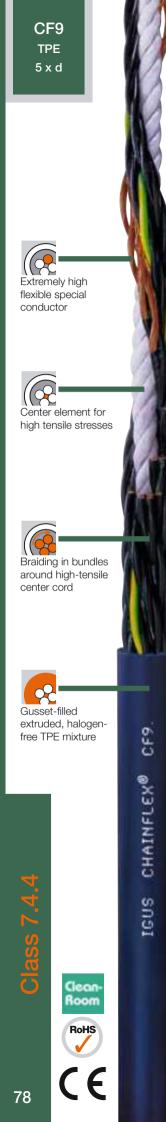
CF2 **PUR** 5 x d

Control cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

Order example: CF2.10.24 - in your desired length (0.5 m steps) CF2 Chainflex® series .10 Code nominal cross section .24 Number of cores

Please use www.chainflex.eu/en/CF2 for your online order.



Delivery time 24h or today*

Delivery time means time until shipping of goods

CF2 cables are resistant to oil and coolants. E-Chain®: System E4/00

TPE Control cable Chainflex® CF9

- for maximum load requirements
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- PVC-free/halogen-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

-35 °C to +100 °C, minimum bending radius 5 x d

Temperature range fixed

-40 °C to +100 °C, minimum bending radius 3 x d

v max. unsupported/gliding

10 m/s, 6 m/s

a max.

100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant

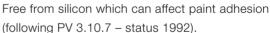
High

Nominal voltage

300/500 V (following DIN VDE 0245).

Testing voltage

2000 V (following DIN VDE 0281-2).


Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

Silicon-free

(following VDMA 24568), Class 4

Halogen-free

Following EN 50267-2-1.

Conductor

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Core stranding

Number of cores < 12: cores stranded in a layer with short pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially law togging structure.

low-torsion structure.

... no minimum order quantity

CF9 TPE 5 x d

Control cable

+49-2203-96 49-222

Fax

Tel. +49-2203-96 49-0

79

Core identification Cores < 0.75 mm²: colour code in accordance with DIN 47100

Cores ≥ 0.75 mm²: cores black with white numerals, one core green/yellow.

CF9.02.03.INI: brown, blue, black CF9.03.04.INI: brown, blue, black, white

CF9.03.05.INI: brown, blue, black, white, green-yellow

CF9.03.16.07.03.INI:

(0.75mm²): blue, green-yellow, brown

(0.34mm²): violet, red, gray, red-blue, green, gray-pink, white-green,

white-yellow, white-gray, black, yellow-brown, brown-green,

white, yellow, pink, gray-brown

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly

flexible, adapted to suit the requirements in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

(€ CE

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1, material/cable tested by IPA according to ISO standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Chainflex® CF9 for outdoor crane systems. E-Chain®: Series E4/00

850 types from stock no cutting costs

TPE Control cable Chainflex® CF9

- for maximum load requirements
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- PVC-free/halogen-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF9.03.16.07.03.INI	4 x 4 x 0.34 + 3 x 0.75	11.0	74	159
CF9.02.02	2 x 0.25	4.0	5	18
CF9.02.03.INI	3 x 0.25	4.5	8	20
CF9.02.06	6 x 0.25	5.5	15	35
CF9.02.07	7 x 0.25	6.0	17	42
CF9.02.08	8 x 0.25	6.5	20	46
CF9.02.12	12 x 0.25	8.0	29	70
CF9.02.18 ⁽¹⁾	18 x 0.25	9.5	44	98
CF9.03.04.INI	4 x 0.34	5.0	13	31
CF9.03.05.INI	5 x 0.34	5.5	17	37
CF9.03.06	6 x 0.34	6.0	20	43
CF9.03.08	8 x 0.34	6.5	26	55
CF9.05.02	2 x 0.5	5.0	10	31
CF9.05.03	3 x 0.5	5.5	15	32
CF9.05.04	4 x 0.5	5.5	20	36
CF9.05.05	5 x 0.5	6.0	24	46
CF9.05.07	7 x 0.5	7.0	34	78
CF9.05.12	12 x 0.5	9.5	58	105
CF9.05.18	18 x 0.5	12.5	86	165
CF9.05.25	25 x 0.5	13.5	120	201
CF9.05.36	36 x 0.5	17.5	173	368
CF9.07.05	5 G 0.75	6.5	36	58
CF9.07.07	7 G 0.75	7.0	50	76
CF9.07.12	12 G 0.75	11.0	86	142
CF9.07.20	20 G 0.75	13.0	144	231
CF9.07.25	25 G 0.75	14.5	180	320
CF9.10.03	3 G 1.0	6.0	29	49
CF9.10.04	4 G 1.0	6.5	38	56
CF9.10.05	5 G 1.0	7.0	48	70
CF9.10.12	12 G 1.0	11.5	115	181
CF9.10.18	18 G 1.0	14.0	173	267
CF9.10.25	25 G 1.0	17.0	241	329
CF9.15.02	2 x 1.5	6.5	29	54
CF9.15.04	4 G 1.5	7.5	58	86
CF9.15.05	5 G 1.5	8.0	72	110
CF9.15.07	7 G 1.5	9.5	101	140
CF9.15.12	12 G 1.5	14.0	173	265
CF9.15.18	18 G 1.5	17.0	260	400
CF9.15.25	25 G 1.5	20.0	360	602
CF9.15.36	36 G 1.5	23.0	519	840
1) Delivery time upon inquiry			P - 21	

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF9.25.04	4 G 2.5	9.0	96	128
CF9.25.05	5 G 2.5	10.0	120	174
CF9.25.07	7 G 2.5	12.0	168	301
CF9.25.12	12 G 2.5	17.0	288	468
CF9.25.16	16 G 2.5	21.0	384	600
CF9.25.18 ⁽⁶⁾	18 G 2.5	24.0	432	827
CF9.25.25	25 G 2.5	24.5	600	990
CF9.40.04	4 G 4.0	10.0	154	195
CF9.60.04	4 G 6.0	12.5	230	310
CF9.60.05	5 G 6.0	14.0	288	400
CF9.100.04 ⁽⁷⁾	4 G 10.0	15.5	384	515
CF9.160.04 ⁽⁷⁾	4 G 16.0	20.0	614	780
CF9.350.04 ⁽⁷⁾	4 G 35.0	26.0	1344	1700

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF9.25.04 – in your desired length (0.5 m steps)

CF9 Chainflex® series .25 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF9 for your online order.

Delivery time 24h or today*

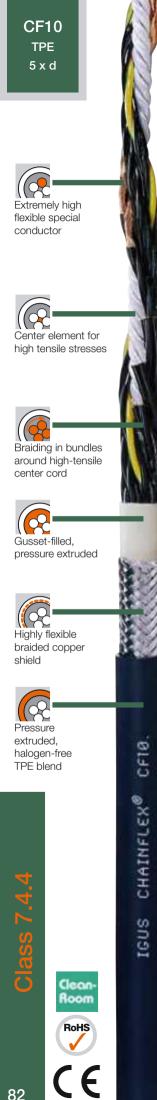
* Delivery time means time until shipping of goods

CF9 for maximum load requirements for both indoor and outdoor applications. E-Chain®: System E4/4

850 types from stock no cutting costs ...

CF9 TPE 5 x d

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222



⁶ Nominal voltage 600/1000 V ⁷ Nominal voltage 450/750 V

TPE Control cable Chainflex® CF10

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

v max.

-35 °C to +100 °C, minimum bending radius 5 x d

Temperature range fixed

-40 °C to +100 °C, minimum bending radius 3 x d

unsupported/gliding

10 m/s, 5 m/s

a max.

100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant High

Nominal voltage 300/500 V (following DIN VDE 0245).

Testing voltage 2000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1.

Conductor

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Core stranding

Number of cores < 12: cores stranded in a layer with short pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially

low-torsion structure.

Core identification

Cores < 0.75 mm²: colour code in accordance with DIN

47100

Cores ≥ 0.75 mm²: cores black with white numerals, one core green/yellow.

... no minimum order quantity

Outer jacket

CF10 TPE 5 x d

+49-2203-96 49-222 Tel. +49-2203-96 49-0 Fax

Inner jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Extremely bending-resistant, tinned braided copper shield. Overall shield

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly

flexible, adapted to suit the requirements in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with CF9.15.07, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, guick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

TPE Control cable Chainflex® CF10

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm ²]	approx. [mm]	[kg/km]		
CF10.01.12	(12 x 0.14)C	7.5	36	80	
CF10.01.18	(18 x 0.14)C	10.0	67	110	
CF10.02.04	(4 x 0.25)C	6.5	25	52	
CF10.02.08	(8 x 0.25)C	7.5	40	75	
CF10.02.12	(12 x 0.25)C	9.5	64	118	
CF10.02.24	(24 x 0.25)C	13.0	109	212	
CF10.05.04	(4 x 0.5)C	7.0	38	68	
CF10.05.05	(5 x 0.5)C	7.5	55	91	
CF10.05.12	(12 x 0.5)C	11.5	102	192	
CF10.05.18	(18 x 0.5)C	13.5	143	270	
CF10.05.25	(25 x 0.5)C	14.5	167	280	
CF10.07.04	(4 G 0.75)C	7.5	47	86	
CF10.07.05	(5 G 0.75)C	7.5	57	95	
CF10.07.07	(7 G 0.75)C	9.0	85	137	
CF10.07.12	(12 G 0.75)C	12.5	138	244	
CF10.07.20	(20 G 0.75)C	15.0	205	346	
CF10.07.24	(24 G 0.75)C	16.5	239	419	
CF10.10.02	(2 x 1.0)C	7.0	38	70	
CF10.10.03	(3 G 1.0)C	7.5	47	84	
CF10.10.04	(4 G 1.0)C	8.0	59	100	
CF10.10.05	(5 G 1.0)C	8.5	71	101	
CF10.10.07	(7 G 1.0)C	10.0	105	166	
CF10.10.12	(12 G 1.0)C	13.5	169	293	
CF10.10.18	(18 G 1.0)C	16.5	240	407	
CF10.10.24	(24 G 1.0)C	18.0	305	506	
CF10.15.04	(4 G 1.5)C	9.0	96	144	
CF10.15.05	(5 G 1.5)C	9.5	108	163	
CF10.15.07	(7 G 1.5)C	11.5	155	225	
CF10.15.12	(12 G 1.5)C	15.5	235	387	
CF10.15.18	(18 G 1.5)C	20.0	361	585	
CF10.25.04	(4 G 2.5)C	11.0	126	180	
CF10.25.07	(7 G 2.5)C	13.5	221	331	
CF10.25.12	(12 G 2.5)C	19.0	373	624	
CF10.40.04	(4 G 4.0)C	11.5	200	290	
CF10.40.05	(5 G 4.0)C	13.5	246	353	
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.					

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

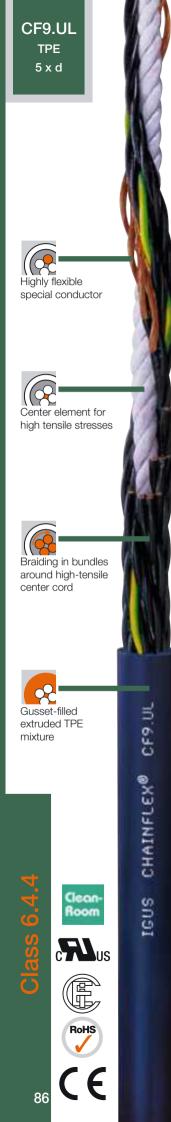
CF₁₀ 5 x d

Control cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

Order example: CF10.10.12 – in your desired length (0.5 m steps) CF10 Chainflex® series .10 Code nominal cross section .12 Number of cores

Please use www.chainflex.eu/en/CF10 for your online order.



Delivery time 24h or today*

Delivery time means time until shipping of goods

Control cable CF10 in storage and retrieval units for high-bay warehouses. E-Chain®: System E2 medium

TPE Control cable Chainflex® CF9.UL

- for maximum load requirements
- TPE outer jacket
- oil- and bio-oil-resistant
- flame-retardant
- PVC-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

v max.

-35 °C to +100 °C, minimum bending radius 5 x d

R fi

Temperature range fixed

-40 °C to +100 °C, minimum bending radius 3 x d

unsupported/gliding

10 m/s, 6 m/s

a max.

100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant

High

Nominal voltage 300/500 V (following DIN VDE 0245).

Testing voltage

2000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 1992).

Conductor

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Core stranding

Number of cores < 12: cores stranded in a layer with short pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially

low-torsion structure.

... no minimum order quantity

Outer jacket

CF9.UL 5 x d

Control cable

+49-2203-96 49-222

Tel. +49-2203-96 49-0 Fax

Core identification Cores < 0.75 mm²: colour code in accordance with DIN 47100

Cores ≥ 0.75 mm²: cores black with white numerals, one core green-yellow.

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly

CF9.UL.02.03.INI: brown, blue, black CF9.UL.03.04.INI: brown, blue, black, white

CF9.UL.03.05.INI: brown, blue, black, white, green-yellow

flexible, adapted to suit the requirements in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

UL/CSA < 0.5 mm²: Style 10479 and 21529, 300 V, 90 °C

≥ **0.5 mm²:** Style 10258 and 21530, 600 V, 90 °C

CEI Following CEI 20-35

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EG.

Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by

IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

- for maximum load requirements
- TPE outer jacket
- oil- and bio-oil-resistant
- flame-retardant
- PVC-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF9.UL.02.02 ⁽¹⁾	2 x 0.25	5.0	5	28
CF9.UL.02.03.INI	3 x 0.25	5.5	8	32
CF9.UL.02.04	4 x 0.25	5.5	10	38
CF9.UL.02.06 ⁽¹⁾	6 x 0.25	6.0	15	50
CF9.UL.02.07 ⁽¹⁾	7 x 0.25	6.5	17	57
CF9.UL.02.08 ⁽¹⁾	8 x 0.25	7.0	20	63
CF9.UL.02.12	12 x 0.25	8.5	29	95
CF9.UL.03.04.INI ⁽¹⁾	4 x 0.34	6.0	13	43
CF9.UL.03.05.INI ⁽¹⁾	5 x 0.34	6.0	16	51
CF9.UL.03.06	6 x 0.34	6.5	20	58
CF9.UL.03.08 ⁽¹⁾	8 x 0.34	7.5	26	76
CF9.UL.05.02	2 x 0.5	6.0	10	44
CF9.UL.05.03 ⁽¹⁾	3 x 0.5	6.5	15	52
CF9.UL.05.04	4 x 0.5	7.0	20	62
CF9.UL.05.05 ⁽¹⁾	5 x 0.5	7.0	24	72
CF9.UL.05.07 ⁽¹⁾	7 x 0.5	8.5	34	97
CF9.UL.05.12	12 x 0.5	11.0	58	196
CF9.UL.05.18	18 x 0.5	13.5	87	242
CF9.UL.05.25 ⁽¹⁾	25 x 0.5	14.5	120	305
CF9.UL.05.36 ⁽¹⁾	36 x 0.5	18.5	173	456
CF9.UL.07.05 ⁽¹⁾	5 G 0.75	8.0	36	94
CF9.UL.07.07 ⁽¹⁾	7 G 0.75	9.5	51	128
CF9.UL.07.12	12 G 0.75	12.5	87	240
CF9.UL.07.20 ⁽¹⁾	20 G 0.75	15.5	144	342
CF9.UL.07.25	25 G 0.75	16.5	180	412
CF9.UL.10.03	3 G 1.0	7.5	29	78
CF9.UL.10.04	4 G 1.0	8.0	39	98
CF9.UL.10.05 ⁽¹⁾	5 G 1.0	8.5	48	112
CF9.UL.10.12	12 G 1.0	13.5	116	287
CF9.UL.10.18	18 G 1.0	16.5	173	394
CF9.UL.10.25 ⁽¹⁾	25 G 1.0	18.5	240	520
CF9.UL.15.04	4 G 1.5	9.0	58	127
CF9.UL.15.05	5 G 1.5	9.5	72	152
CF9.UL.15.07	7 G 1.5	11.0	101	198
CF9.UL.15.12	12 G 1.5	15.5	173	385
CF9.UL.15.18	18 G 1.5	19.0	260	535
CF9.UL.15.25	25 G 1.5	19.5	360	685

(1) Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Φ
\overline{c}
ਲ
Ö
$\overline{}$
5
₹
≍
X
\cup

CF9.UL

5 x d

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Delivery program Part No.	Number of cores and conductor nominal cross section [mm²]	External diameter approx. [mm]	Copper index [kg/km]	Weight [kg/km]
CF9.UL.25.04	4 G 2.5	10.5	96	189
CF9.UL.25.05	5 G 2.5	11.0	120	220
CF9.UL.25.07 ⁽¹⁾	7 G 2.5	13.5	168	288
CF9.UL.25.12	12 G 2.5	19.0	288	613
CF9.UL.25.16 ⁽¹⁾	16 G 2.5	21.5	384	805
CF9.UL.25.18	18 G 2.5	23.5	432	852
CF9.UL.25.25 ⁽¹⁾	25 G 2.5	26.5	600	1163
CF9.UL.40.04	4 G 4.0	12.0	154	278
CF9.UL.60.04	4 G 6.0	13.5	231	382

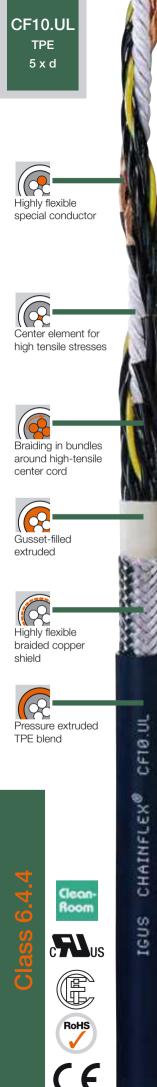
⁽¹⁾ Delivery time upon inquiry

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF9.UL.02.12 - in your desired length (0.5 m steps)

CF9.UL Chainflex® series .02 Code nominal cross section .12 Number of cores

Please use www.chainflex.eu/en/CF9UL for your online order.


Delivery time 24h or today*

Delivery time means time until shipping of goods

igus® Chainflex® cables in a rafting channel application.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

TPE Control cable Chainflex® CF10.UL

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- flame-retardant
- PVC-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

v max.

-35 °C to +100 °C, minimum bending radius 5 x d

Temperature range

fixed

-40 °C to +100 °C, minimum bending radius 3 x d

unsupported/gliding

10 m/s, 6 m/s

a max.

100 m/s²

Travel distance

Nominal voltage

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant High

300/500 V (following DIN VDE 0245).

Testing voltage

2000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992). Fine-wire stranded conductor in especially bending-resistant

Conductor

version consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Core stranding

Number of cores < 12: cores stranded in a layer with short

pitch length.

Number of cores ≥ 12: cores combined in bundles and stranded together around a centre for high tensile stresses with adapted, short pitch lengths and pitch directions, especially low-torsion structure.

Core identification

Cores < 0.75 mm²: colour code in accordance with DIN 47100 Cores ≥ 0.75 mm²: cores black with white numerals, one

core green-yellow.

... no minimum order quantity

Class 6.4.4

CF10.UL 5 x d

+49-2203-96 49-222 Tel. +49-2203-96 49-0 Fax

Inner jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield

Outer jacket

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly

flexible, adapted to suit the requirements in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

UL/CSA < 0.5 mm²: Style 10479 and 21529, 300 V, 90 °C ≥ **0.5 mm²:** Style 10258 and 21530, 600 V, 90 °C

CEI Following CEI 20-35

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EG.

Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- flame-retardant
- PVC-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CF10.UL.02.04	(4 x 0.25)C	7.0	25	71
CF10.UL.02.08	(8 x 0.25)C	8.5	37	101
CF10.UL.02.12	(12 x 0.25)C	10.0	63	153
CF10.UL.02.24	(24 x 0.25)C	13.0	109	242
CF10.UL.05.04	(4 x 0.5)C	8.5	37	101
CF10.UL.05.05 ⁽¹⁾	(5 x 0.5)C	8.5	43	111
CF10.UL.05.12	(12 x 0.5)C	13.0	106	258
CF10.UL.05.18 ⁽¹⁾	(18 x 0.5)C	15.0	146	332
CF10.UL.05.25	(25 x 0.5)C	16.0	185	411
CF10.UL.07.03	(3 G 0.75)C	8.5	40	104
CF10.UL.07.04	(4 G 0.75)C	9.0	49	123
CF10.UL.07.05	(5 G 0.75)C	9.5	68	150
CF10.UL.07.07 ⁽¹⁾	(7 G 0.75)C	11.0	90	194
CF10.UL.07.12	(12 G 0.75)C	14.5	143	336
CF10.UL.07.20 ⁽¹⁾	(20 G 0.75)C	17.0	213	456
CF10.UL.07.24 ⁽¹⁾	(24 G 0.75)C	19.0	276	578
CF10.UL.10.02 ⁽¹⁾	(2 x 1.0)C	8.5	38	104
CF10.UL.10.03 ⁽¹⁾	(3 G 1.0)C	9.0	48	120
CF10.UL.10.04	(4 G 1.0)C	9.5	71	155
CF10.UL.10.05 ⁽¹⁾	(5 G 1.0)C	10.5	83	174
CF10.UL.10.07 ⁽¹⁾	(7 G 1.0)C	12.0	111	230
CF10.UL.10.12	(12 G 1.0)C	14.5	171	370
CF10.UL.10.18 ⁽¹⁾	(18 G 1.0)C	19.0	274	545
CF10.UL.10.24 ⁽¹⁾	(24 G 1.0)C	21.5	346	709
CF10.UL.15.04	(4 G 1.5)C	10.5	94	192
CF10.UL.15.05	(5 G 1.5)C	11.0	215	112
CF10.UL.15.07	(7 G 1.5)C	13.0	149	279
CF10.UL.15.12	(12 G 1.5)C	17.5	243	508
CF10.UL.15.18	(18 G 1.5)C	21.5	375	724
CF10.UL.25.04	(4 G 2.5)C	12.0	140	268
CF10.UL.25.07 ⁽¹⁾	(7 G 2.5)C	15.0	227	404
CF10.UL.25.12 ⁽¹⁾	(12 G 2.5)C	21.5	404	804
CF10.UL.40.04	(4 G 4.0)C	13.5	206	369
(1) Dolivon, timo upon inquin,				

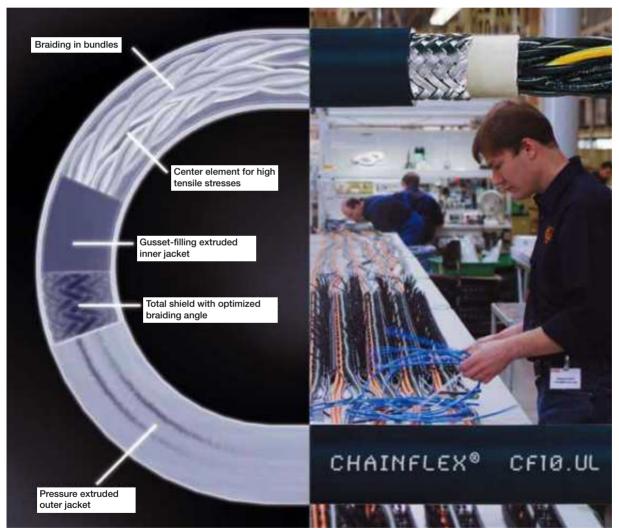
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

CF10.UL 5 x d

Control cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0



Order example: CF10.UL.10.02 - in your desired length (0.5 m steps) CF10.UL Chainflex® series .10 Code nominal cross section .02 Number of cores

Please use www.chainflex.eu/en/CF10UL for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

The special cable structure of Chainflex® CF10.UL guarantees quality - also in the igus® harnessing.

TPE Control cable Chainflex® CF98

- for maximum load requirements and especially small radii up to 4 x d
- TPE outer jacket
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

[°C] ↔ [°C]

Temperature range

moved

-35 °C to +90 °C, minimum bending radius 4 x d

Temperature range fixed

-40 °C to +90 °C, minimum bending radius 3 x d

v max.

unsupported/gliding 10 m/s, 6 m/s

a R

a max. 100 m/s²

[m]

Travel distance Short, very fast applications with small radii and tight design

space, Class 4

ŽUV

UV-resistant High

₹u No

Nominal voltage 300/300 V

A

Testing voltage 1500 V

oil 6

Oil Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Hal

Halogen-free Following EN 50267-2-1.

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Conductor Conductor consisting of a highly flexible special alloy.

Core insulation Mechanically high-quality TPE mixture.

Core stranding Cores stranded in one layer with especially short pitch length.

Core identification Colour code in accordance with DIN 47100.

CF9.02.03.INI: brown, blue, black W

CF9.03.04.INI: brown, blue, black, white **Outer jacket** Low-adhesion mixture on the basis of TPE,

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: dark-blue (similar to RAL 5011)

CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with

CF9.15.07, tested by IPA according to standard 14644-1

... no minimum order quantity

CF98 TPE 4 x d

D.

Control ca

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

Typical application area

- of for maximum load requirements at 4 x d
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for short, very fast applications with small radii and tight design space
- automatic insertion machines, automatic doors, clean room, very quick handling

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF98.01.02	2 x 0.14	4.0	4	11
CF98.01.03 ⁽¹⁾	3 x 0.14	4.5	6	14
CF98.01.04	4 x 0.14	5.0	9	16
CF98.01.07 ⁽¹⁾	7 x 0.14	6.0	14	21
CF98.01.08	8 x 0.14	6.5	16	24
CF98.02.03.INI	3 x 0.25	5.0	12	25
CF98.02.04	4 x 0.25	5.5	16	30
CF98.02.07	7 x 0.25	6.5	26	53
CF98.02.08	8 x 0.25	7.0	30	60
CF98.03.03 ⁽¹⁾	3 x 0.34	5.0	14	28
CF98.03.04.INI	4 x 0.34	5.5	19	35
CF98.03.07	7 x 0.34	7.0	32	55
CF98.03.08 ⁽¹⁾	8 x 0.34	7.5	38	63
CF98.05.04	4 x 0.5	6.0	31	40

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

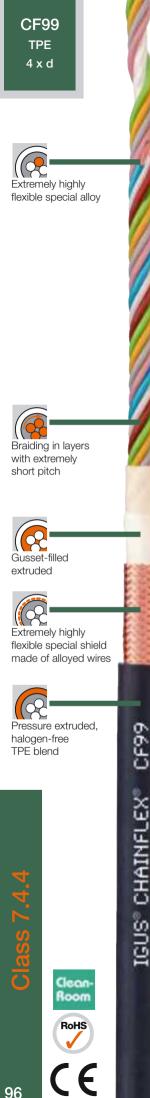
G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF98.02.04 – in your desired length (0.5 m steps)

CF98 Chainflex® series .02 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF98 for your online order.

Delivery time 24h or today*


* Delivery time means time until shipping of goods

Test data ► Page 32

 ${\it Chainflex}{}^{\scriptscriptstyle 0}\,{\it CF98}\ {\it for\ maximum\ load\ requirements\ and\ especially\ small\ radii\ at\ automatic\ doors.}$

850 types from stock no cutting costs ...

TPE Control cable Chainflex® CF99

- for maximum load requirements and especially small radii up to 4 x d
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- low-temperature-flexible

Temperature range

Temperature range

moved

-35 °C to +90 °C, minimum bending radius 4 x d

fixed v max. -40 °C to +90 °C, minimum bending radius 3 x d

unsupported/gliding

10 m/s, 6 m/s

a max.

Travel distance

100 m/s²

Short, very fast applications with small radii and tight design

space, Class 4

UV-resistant High

Nominal voltage 300/300 V

Testing voltage 1500 V

oil **♦**

Oil Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Hal

Halogen-free Following EN 50267-2-1.

Free from silicon which can affect paint adhesion Silicon-free

(following PV 3.10.7 - status 1992).

Conductor Conductor consisting of a highly flexible special alloy.

Core insulation Mechanically high-quality TPE mixture.

Core stranding Cores stranded in one layer with especially short pitch length.

Core identification Colour code in accordance with DIN 47100.

Inner jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield Highly flexible alloyed special shield.

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the require-

ments in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

Following 2006/95/EG

... no minimum order quantity

CF99 TPE 4 x d

<u>D</u>

Control cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

RoHS Lead free

Following EU guideline (RoHS) 2002/95/EC.

Clean room

According to ISO Class 1. Outer jacket material complies with CF9.15.07, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements at 4 x d
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for short, very fast applications with small radii and tight design space
- automatic insertion machines, automatic doors, clean room, very quick handling

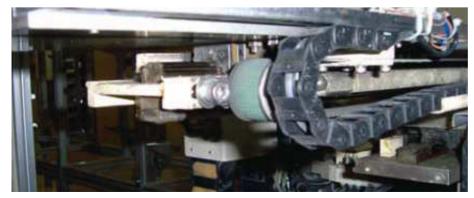
Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF99.01.02	(2 x 0.14)C	5.5	14	33
CF99.01.03 ⁽¹⁾	(3 x 0.14)C	6.0	17	37
CF99.01.04	(4 x 0.14)C	6.0	21	43
CF99.01.07 ⁽¹⁾	(7 x 0.14)C	7.5	32	62
CF99.01.08	(8 x 0.14)C	8.0	36	69
CF99.02.03 ⁽¹⁾	(3 x 0.25)C	6.5	25	48
CF99.02.04	(4 x 0.25)C	6.5	30	56
CF99.02.07	(7 x 0.25)C	8.0	48	85
CF99.02.08 ⁽¹⁾	(8 x 0.25)C	8.5	54	93
CF99.03.03 ⁽¹⁾	(3 x 0.34)C	6.5	27	51
CF99.03.04 ⁽¹⁾	(4 x 0.34)C	7.0	35	62
CF99.03.08 ⁽¹⁾	(8 x 0.34)C	9.0	64	105

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

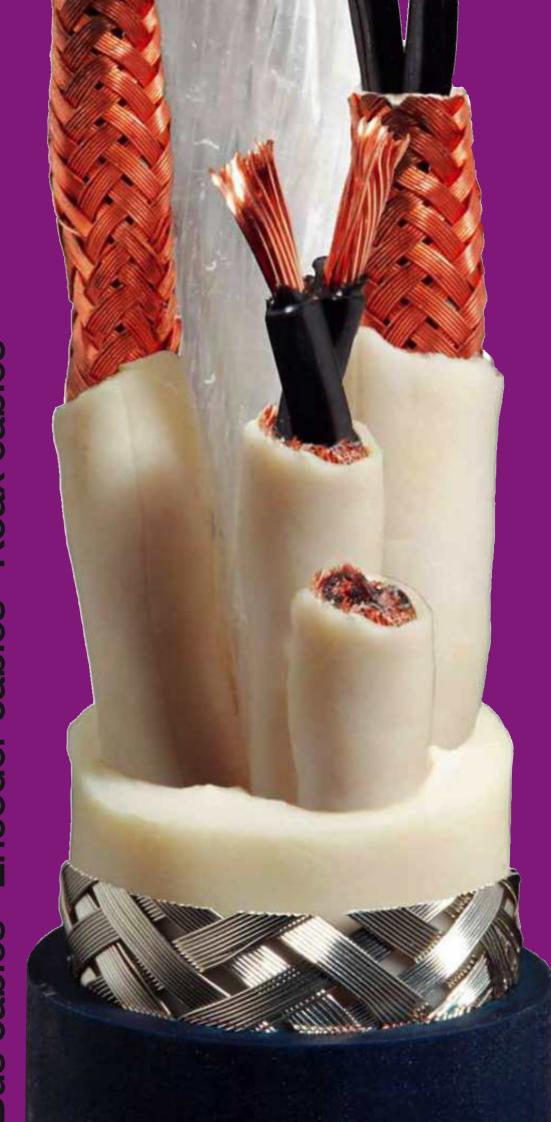
G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF99.01.02 – in your desired length (0.5 m steps)



Please use www.chainflex.eu/en/CF99 for your online order.

Delivery time 24h or today*


* Delivery time means time until shipping of goods

Automatisierte Stapelanlage für Phosphorbildschirme: gerader Installationsraum, kleiner Biegeradius, 300.000 Doppelhübe pro Monat.

850 types from stock no cutting costs ...

Bus cables Encoder cables Koax cables

Chainflex® cable

Jacket

Shield

Minimum bending
radius, moved
[factor x d]

Temperature
moved
from/to [°C]

Approvals and **Forsion resistant** Approvals and standards v max. [m/s] gliding a max. [m/s²] unsupported Oil-resistant v max. [m/s] Page **Data cables** CF240 C (💖 🔤 (🖰 🙉 us **PVC** 10-12 -5/+703 2 20 100 CF211 **PVC** 10 -5/ +70 (E 🤭 🔤 🕞 🙉 5 3 50 102 CF112 C (💛 (- Rus **PUR** 10 -35/ +805 3 50 104 CF113 C € 💖 🗐 🙉 🙉 **PUR** 10 -35/ +805 3 50 106 CF111** -35/ +100 (€ 💖 🔤 🕞 🗛 🗷 **TPE** 10 2 30 108 **CF11 TPE** 10 -35/ +100 **(€** 💖 🚞 10 6 100 112 **CF12** -35/ +100 **(€** 💖 🚞 **TPE** 10 10 6 100 114 **Bus cables** (with selection chart for Chainflex® bus cables) 116 CF BUS* C 6 🤭 🔤 🕞 🙉 🌠 -35/ +70 100 **TPE** ✓ 10-12,5 10 6 118 CF11.LC* **TPE** 10 -35/+70**(€** (%) **(***** 10 6 100 122 CF11.LC.D* C E (P) === 15. **TPE** 10 -35/+7010 6 100 124 **CF14 CAT5*** (€ ^{RoHS} <u>***</u> **** TPE** 12,5 -35/ +70 10 6 100 126 Measuring system cables CF211 (E 🤭 🔤 🕞 🙉 **PVC** -5/ +70 10 5 3 50 128 CF113.D C € 💖 🔤 🗐 🙉 🔣 **PUR** 10 -20/ +805 3 50 132 CF111.D -35/ +100 (€ 💖 🔤 🕒 🗛 🌠 **TPE** 12 2 30 136 **CF11.D TPE** -35/ +100 🕻 🧲 🚞 🌉 10 10 6 100 140 Koax cables CFKOAX1 **TPE** 10 -35/ +100 (€ 💖 🚞 1 10 5 100 144

^{*} Selection chart for bus cables ▶ Page116

^{**} phase-out model, is replaced by CF113

PVC Data cable Chainflex® CF240

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed v max. -20 °C to +70 °C, minimum bending radius 5 x d

-5 °C to +70 °C, minimum bending radius 10 x d with < 10 m

travel; minimum bending radius 12 x d with ≥ 10 m travel

R

unsupported/gliding

3 m/s, 2 m/s

a R

a max.

20 m/s²

Travel distance

Oil

Freely suspended and gliding travel distances up to 50 m,

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1),

Class 2

¶∪ ^

Nominal voltage

300/300 V (following DIN VDE 0245).

Testing voltage 1500 V

oil b

Class 2

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

(X)

Silicon-free
Conductor

Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 1992).

(?

design made of bare copper wires.

Mechanically high-quality PVC mixture (following DIN VDF 0207 Part 4)

(following DIN VDE 0207 Part 4).

Core stranding

Core insulation

The individual cores are stranded in layers with short pitch lengths.

Very finely stranded special cores of particularly high-flex

Core identification

Colour code in accordance with DIN 47100.

Intermediate sheath

Foil taping over the external layer.

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Outer jacket

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the requirements in Energy Chains® (following DIN

VDE 0282 Part 10).

Colour: gray (similar to RAL 7001)

UL/CSA Style 10467 and 2464, 300 V, 80 °C

CEI Following CEI 20-35

CE Following 2006/95/EG

... no minimum order quantity

CF240 PVC 10-12 x d

ata cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean-Room

Clean room

According to ISO Class 2. Outer jacket material complies with CF5.10.07, tested by IPA according to standard 14644-1

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 50 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, handling, indoor cranes

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF240.01.03	(3 x 0.14)C	4.5	16	35
CF240.01.04	(4 x 0.14)C	5.0	18	38
CF240.01.05	(5 x 0.14)C	5.5	20	42
CF240.01.07	(7 x 0.14)C	6.0	25	51
CF240.01.14	(14 x 0.14)C	7.0	42	76
CF240.01.18	(18 x 0.14)C	8.0	48	90
CF240.01.24	(24 x 0.14)C	9.5	60	113
CF240.02.03	(3 x 0.25)C	5.5	21	40
CF240.02.04	(4 x 0.25)C	5.5	24	48
CF240.02.05	(5 x 0.25)C	6.0	27	52
CF240.02.07	(7 x 0.25)C	7.0	35	66
CF240.02.08	(8 x 0.25)C	7.5	40	74
CF240.02.14	(14 x 0.25)C	8.0	57	100
CF240.02.18	(18 x 0.25)C	9.0	71	122
CF240.02.24	(24 x 0.25)C	11.0	92	174
CF240.03.03	(3 x 0.34)C	5.5	24	45
CF240.03.04	(4 x 0.34)C	6.0	28	51
CF240.03.05	(5 x 0.34)C	6.5	32	58
CF240.03.07	(7 x 0.34)C	7.0	43	75
CF240.03.10	(10 x 0.34)C	8.5	55	110
CF240.03.14	(14 x 0.34)C	8.5	71	116
CF240.03.18	(18 x 0.34)C	10.0	87	140
CF240.03.24	(24 x 0.34)C	12.0	115	203

Order example: CF240.02.03 – in your desired length (0.5 m steps) CF240 Chainflex® series .02 Code nominal cross section .03 Number of cores

Please use www.chainflex.eu/en/CF240 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

PVC Data cable Chainflex® CF211

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed v max.

unsupported/gliding

Travel distance

-5 °C to +70 °C, minimum bending radius 10 x d

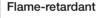
-20 °C to +70 °C, minimum bending radius 5 x d

a max. 50 m/s²

Class 3

Nominal voltage 300/300 V (following DIN VDE 0245).

5 m/s, 3 m/s


Testing voltage 1500 V

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1),

Freely suspended and gliding travel distances up to 100 m,

Class 2

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Conductor

Very finely stranded special cores of particularly high-flex

design made of bare copper wires. Mechanically high-quality PVC mixture

Core insulation

Outer jacket

(following DIN VDE 0207 Part 4).

2 cores each stranded in pairs with short pitch lengths, core Core stranding

pairs also stranded with short pitch lengths.

Core identification Colour code in accordance with DIN 47100.

Intermediate sheath Foil taping over the external layer.

Overall shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the requirements in Energy Chains® (following DIN

VDE 0282 Part 10). Colour: gray (similar to RAL 7001)

UL/CSA < 0.5 mm²: Style 10467 and 2464, 300 V, 80°C ≥ 0.5 mm²: Style 1729 and 2464, 300 V, 80 °C

CEI Following CEI 20-35

CE Following 2006/95/EG

Following EU guideline (RoHS) 2002/95/EC Lead free

Clean room According to ISO Class 2. Outer jacket material complies with

CF5.10.07, tested by IPA according to standard 14644-1

... no minimum order quantity eplan download, configurator, PDF catalogues, lifetime ...

CF211 10 x d

Data cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, handling, indoor cranes

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF211.02.01.02	(1 x (2 x 0.25))C	5.0	16	35
CF211.02.02.02 ⁽²⁾	(2 x (2 x 0.25))C	5.5	28	60
CF211.02.03.02	(3 x (2 x 0.25))C	7.0	37	73
CF211.02.04.02	(4 x (2 x 0.25))C	8.0	44	85
CF211.02.05.02	(5 x (2 x 0.25))C	8.5	51	97
CF211.02.06.02	(6 x (2 x 0.25))C	9.5	58	110
CF211.02.08.02	(8 x (2 x 0.25))C	11.5	75	160
CF211.02.10.02	(10 x (2 x 0.25))C	13.0	93	195
CF211.02.14.02	(14 x (2 x 0.25))C	13.5	109	205
CF211.03.03.02	(3 x (2 x 0.34))C	8.0	37	79
CF211.03.08.02	(8 x (2 x 0.34))C	12.0	98	202
CF211.03.10.02 ⁽¹⁾	(10 x (2 x 0.34))C	12.0	118	254
CF211.05.01.02	(1 x (2 x 0.5))C	5.5	23	50
CF211.05.02.02 ⁽²⁾	(2 x (2 x 0.5))C	8.5	44	80
CF211.05.03.02	(3 x (2 x 0.5))C	9.0	57	100
CF211.05.04.02	(4 x (2 x 0.5))C	9.5	68	120
CF211.05.05.02	(5 x (2 x 0.5))C	11.0	80	145
CF211.05.06.02	(6 x (2 x 0.5))C	12.5	99	185
CF211.05.08.02	(8 x (2 x 0.5))C	14.0	124	230
CF211.05.10.02	(10 x (2 x 0.5))C	16.0	175	320
CF211.05.14.02	(14 x (2 x 0.5))C	17.0	187	335

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

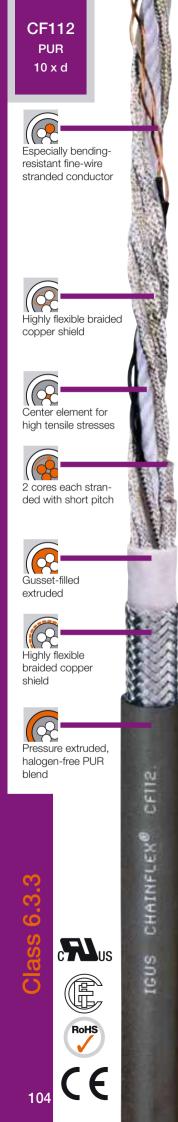
G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF211.02.04.02 - in your desired length (0.5 m steps)

CF211 Chainflex® series .02 Code nominal cross section .04 Number of pairs .02 Identification pairs

Please use www.chainflex.eu/en/CF211 for your online order.

Delivery time 24h or today*


Delivery time means time until shipping of goods

Delivery program Measuring system cable

- ► Page 128, CF211 (PVC)
- ► Page 136, CF111.D (TPE)
- ► Page 140, CF11.D (TPE)


850 types from stock no cutting costs

The Chainflex® types marked with (2) are cables designed as a star-quad.

New! PUR Data cable Chainflex® CF112

- for high load requirements
- PUR outer jacket
- double-shielded, twisted-pair
- oil-resistant and coolant-resistant
- notch-resistant
- PVC-free/halogen-free
- flame-retardant
- hydrolysis-resistant and microbe-resistant

Testing voltage 1500 V

Oil Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),
Class 3.

Flame-retardant According to IEC 332-1, CEI 20-35, FT1.

Outer jacket

Silicon-free Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 192).

Conductor Very finely stranded special cores of particularly high-flex design

made of bare copper wires.

Core insulation

Mechanically high-quality TPE mixture.

Core stranding 2 cores each stranded in pairs with short pitch lengths, core

pairs also stranded with short pitch lengths.

Core identification Colour code in accordance with DIN 47100

Element shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Intermediate jacket

PUR mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: gray (similar to RAL 7016)

... no minimum order quantity

CF112 PUR 10 x d

ata cable

Data

Fel. +49-2203-96 49-0 =ax +49-2203-96 49-222

105

UL/CSA Style 10493 and 20233, 300 V, 80°C

CEI Following CEI 20-35

CE

CE Following 2006/95/EG

RoHS Lea

Lead free Following EU guideline (RoHS) 2002/95/EG.

Typical application area

- for high load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications with average sun radiation
- especially for freely suspended and gliding travel distances up to 100 m
- Machining units/machine tools, storage and retrieval units for high-bay warehouses, packaging industry, quick handling, refrigerating sector

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm²]	approx. [mm]	[kg/km]		
CF112.02.02.02 ⁽¹⁾	(2 x (2 x 0.25)C)C	9.5	54	125	New
CF112.02.03.02 ⁽¹⁾	(3 x (2 x 0.25)C)C	10.0	68	144	New
CF112.02.04.02	(4 x (2 x 0.25)C)C	11.0	78	159	New
CF112.02.05.02 ⁽¹⁾	(5 x (2 x 0.25)C)C	11.5	95	184	New
CF112.02.06.02 ⁽¹⁾	(6 x (2 x 0.25)C)C	12.0	107	210	New
CF112.05.02.02 ⁽¹⁾	(2 x (2 x 0.5)C)C	11.5	72	168	New
CF112.05.03.02 ⁽¹⁾	(3 x (2 x 0.5)C)C	12.0	95	192	New
CF112.05.04.02 ⁽¹⁾	(4 x (2 x 0.5)C)C	12.5	113	221	New
CF112.05.05.02 ⁽¹⁾	(5 x (2 x 0.5)C)C	13.5	137	263	New
CF112 05 06 02 ⁽¹⁾	(6 x (2 x 0 5)C)C	14.5	155	307	New

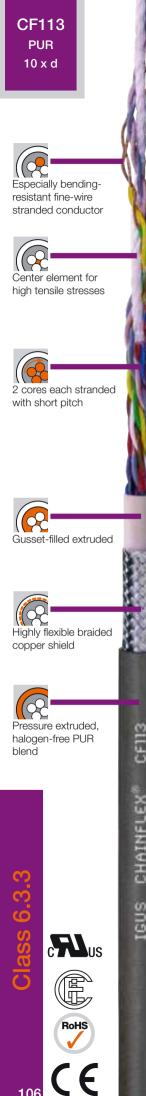
⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x = without earth core

Order example: CF112.02.04.02 - in your desired length (0.5 m steps)

CF112 Chainflex® series .02 Code nominal cross section .04 Number of pairs .02 Identification pairs



Please use www.chainflex.eu/en/CF112 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

New! PUR Data cable Chainflex® CF113

- for high load requirements
- PUR outer jacket
- twisted-pair
- oil-resistant and coolant-resistant
- notch-resistant
- PVC-free/halogen-free
- flame-retardant
- hydrolysis-resistant and microbe-resistant

Temperature range

-35 °C to +80 °C, minimum bending radius 10 x d

Temperature range

-40 °C to +80 °C, minimum bending radius 5 x d

fixed v max.

unsupported/gliding 10 m/s

10 m/s, 5 m/s/

a max.

80 m/s²

Travel distance Freely suspended and gliding travel distances up to 100 m,

Class 3

Hu

Nominal voltage

300/300 V (following DIN VDE 0245).

Testing voltage

1500 V

oil 6

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Class 3.

Flame-retardant According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 – status 192).

Halogen-free

Following EN 50267-2-1.

Conductor

Very finely stranded special cores of particularly high-flex design

made of bare copper wires.

Core insulation

Mechanically high-quality TPE mixture.

Core stranding

2 cores each stranded in pairs with short pitch lengths, core pairs also stranded with short pitch lengths.

Core identification

Colour code in accordance with DIN 47100

Intermediate jacket

PUR mixture adapted to suit the requirements in Energy Chains®.

Overall shield

Extremely bending-resistant, tinned braided copper shield.

Outer jacket

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282 Part 10). Colour: gray (similar to RAL 7016)

... no minimum order quantity

CF113 PUR 10 x d

ata cable

Data ca

Fel. +49-2203-96 49-0 =ax +49-2203-96 49-222

107

UL/CSA Style 10493 and 20233, 300 V, 80°C

CEI Following CEI 20-35

CE

CE Following 2006/95/EG

RoHS Lead fr

Lead free Following EU guideline (RoHS) 2002/95/EG.

Typical application area

- for high load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications with average sun radiation
- especially for freely suspended and gliding travel distances up to 100 m
- Machining units/machine tools, storage and retrieval units for high-bay warehouses, packaging industry, quick handling, refrigerating sector

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm²]	approx. [mm]	[kg/km]		
CF113.02.02.02(1/2)	(2 x (2 x 0.25))C	8.0	31	86	New
CF113.02.03.02 ⁽¹⁾	(3 x (2 x 0.25))C	8.5	40	96	New
CF113.02.04.02	(4 x (2 x 0.25))C	9.0	45	107	New
CF113.02.05.02 ⁽¹⁾	(5 x (2 x 0.25))C	9.5	56	125	New
CF113.02.06.02 ⁽¹⁾	(6 x (2 x 0.25))C	10.0	62	137	New
CF113.05.02.02 ^(1/2)	(2 x (2 x 0.5))C	10.0	50	127	New
CF113.05.03.02 ⁽¹⁾	(3 x (2 x 0.5))C	10.5	62	142	New
CF113.05.04.02 ⁽¹⁾	(4 x (2 x 0.5))C	11.0	70	162	New
CF113.05.05.02 ⁽¹⁾	(5 x (2 x 0.5))C	11.5	84	185	New
CF113 05 06 02 ⁽¹⁾	(6 x (2 x 0.5))C	12.5	95	207	New

⁽¹⁾ Delivery time upon inquiry

The Chainflex® types marked with (2) are cables designed as a star-quad.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x = without earth core

W

Order example: CF113.02.06.02 – in your desired length (0.5 m steps)

CF113 Chainflex® series .02 Code nominal cross section .06 Number of pairs .02 Identification pairs



Please use www.chainflex.eu/en/CF113 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

TPE Data cable Chainflex® CF111

- for high load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- flame-retardant
- PVC-free
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

-35 °C to +100 °C, minimum bending radius 10 x d

fixed v max.

Temperature range fixed

-40 °C to +100 °C, minimum bending radius 6 x d

V R

unsupported

2 m/s

a max. 30 m/s^2

Travel distance

Freely suspended travel distances, Class 1

UV-resistant Medium

4u

Nominal voltage 300 V

A

Testing voltage 1500 V

Oil

(following VDMA 24568), Class 4

Flame-retardant According to IEC 332-1, CEI 20-35, FT1

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 – status 1992).

Conductor

Very finely stranded special cores of particularly high-flex

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

design made of bare copper wires.

Core insulation Mechanically high-quality PP mixture.

Core stranding 2 cores each stranded in pairs with short pitch lengths, core

pairs also stranded with short pitch lengths.

Core identification Colour code in accordance with DIN 47100.

Intermediate jacket Foil taping over the external layer.

Overall shield Bending-resistant, tinned braided copper shield. Coverage

approx. 55% linear, approx. 80% optical.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements

in Energy Chains®.

Colour: gray (similar to RAL 7001)

... no minimum order quantity

CF111TPE
10 x d

.

Data cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

Style 10467 and 21259, 300 V, 90 °C

CEI Following CEI 20-35

 ϵ

CE Following 2006/95/EG

RoHS

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean-Room Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by

IPA according to standard 14644-1

Typical application area

- for high load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended travel distances
- Machining units/machine tools, low temperature applications

TPE Data cable Chainflex® CF111

- for high load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- flame-retardant
- PVC-free
- hydrolysis-resistant and microbe-resistant

Delivery program
Part No. Number of cores and External Copper Weight conductor nominal diameter index [kg/km] cross section [mm²] approx. [mm] [kg/km] CF111.02.01.02(1) (1 x (2 x 0.25))C 5.5 13 38 CF111.02.02.02^(1/2) (2 x (2 x 0.25))C 21 50 6.0 CF111.02.03.02* (3 x (2 x 0.25))C 28 68 7.5 CF111.02.04.02 (4 x (2 x 0.25))C 8.0 34 80 CF111.02.05.02(1) 8.5 41 93 (5 x (2 x 0.25))C CF111.02.06.02(1) (6 x (2 x 0.25))C 9.5 55 116 CF111.02.08.02(1) 10.5 64 143 (8 x (2 x 0.25))C CF111.02.10.02(1) (10 x (2 x 0.25))C 12.0 88 183 CF111.02.14.02(1) (14 x (2 x 0.25))C 12.5 107 207 CF111.03.03.02⁽¹⁾ 34 (3 x (2 x 0.34))C 8.0 78 CF111.03.10.02(1) (10 x (2 x 0.34))C 12.5 66 177 CF111.05.01.02⁽¹⁾ 19 (1 x (2 x 0.5))C 6.0 48 CF111.05.02.02(1/2) (2 x (2 x 0.5))C 7.0 31 67 CF111.05.03.02(1) (3 x (2 x 0.5))C 8.5 45 97 CF111.05.04.02 $(4 \times (2 \times 0.5))C$ 8.5 55 110 CF111.05.05.02⁽¹⁾ 10.0 77 147 (5 x (2 x 0.5))C CF111.05.06.02(1) (6 x (2 x 0.5))C 11.0 91 171 CF111.05.08.02(1) (8 x (2 x 0.5))C 12.5 116 218 CF111.05.10.02(1) $(10 \times (2 \times 0.5))C$ 13.5 144 276 CF111.05.14.02(1) (14 x (2 x 0.5))C 14.5 182 315

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF111.05.06.02 – in your desired length (0.5 m steps)

CF111 Chainflex® series .05 Code nominal cross section .06 Number of pairs .02 Identification pairs

Please use www.chainflex.eu/en/CF111 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

^{*} phase-out model, is replaced by CF113

⁽¹⁾ Delivery time upon inquiry

The Chainflex® types marked with (2) are cables designed as a star-quad.

CF111 10 x d

Data cable

CNC controlled machining centres for stationary production.

TPE Data cable Chainflex® CF11

- for maximum load requirements
- TPE outer jacket
- shielded
- oil-resistant
- bio-oil-resistant
- PVC-free/halogen-free
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

a max.

10 m/s, 6 m/s 100 m/s²

Travel distance

Nominal voltage

Freely suspended and gliding travel distances up to 400 m

-35 °C to +100 °C, minimum bending radius 10 x d

-40 °C to +100 °C, minimum bending radius 5 x d

and more, Class 4

UV-resistant High

Testing voltage 1500 V

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

300/300 V (following DIN VDE 0245).

(following VDMA 24568), Class 4

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1.

Conductor Fine-wire stranded conductor in especially bending-resistant

version consisting of bare copper wires (following EN 60228).

Core insulation Mechanically high-quality TPE mixture.

Core stranding

2 cores each stranded in pairs with short pitch lengths, core

pairs also stranded with short pitch lengths.

Core identification

Inner jacket

Outer jacket

Cores < 1.0 mm²: colour code in accordance with DIN 47100

Cores ≥ 1.0 mm²: cores black with white numerals

TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion mixture on the basis of TPE, especially abrasi-

on-resistant and highly flexible, adapted to suit the require-

ments in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

Following 2006/95/EG

Lead free

Following EU guideline (RoHS) 2002/95/EC.

no minimum order quantity

CF11 TPE 10 x d

Data cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

Clean room

According to Cass 1. Oter acket material complies with CF9.15.07, tested by PA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, V-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight	
Bus cable	conductor nominal	diameter	index	[kg/km]	
Part No.	cross section [mm²]	approx. [mm]	[kg/km]		
CF11.01.04.02	(4 x (2 x 0,14))C	7,0	28	64	
CF11.01.18.02	(18 x (2 x 0,14))C	14,0	86	164	
CF11.02.02.02 ⁽²⁾	(2 x (2 x 0,25))C	6,5	25	52	
CF11.02.03.02	(3 x (2 x 0,25))C	8,0	34	60	
CF11.02.04.02	(4 x (2 x 0,25))C	9,0	44	80	
CF11.02.05.02	(5 x (2 x 0,25))C	9,0	55	100	
CF11.02.06.02	(6 x (2 x 0,25))C	10,0	66	127	ĕl ∧
CF11.02.09.02	(9 x (2 x 0,25))C	12,5	92	198	
CF11.02.10.02	(10 x (2 x 0,25))C	13,0	99	200	
CF11.02.14.02	(14 x (2 x 0,25))C	13,5	120	238	ĕl ∧
CF11.03.08.02	(8 x (2 x 0,34))C	12,5	90	154	
CF11.05.04.02	(4 x (2 x 0,5))C	10,0	91	108	
CF11.05.06.02	(6 x (2 x 0,5))C	11,5	95	190	
CF11.05.08.02	(8 x (2 x 0,5))C	14,0	131	250	
CF11.07.03.02	(3 x (2 x 0,75))C	11,0	77	131	
CF11.10.04.02	(4 x (2 x 1,0))C	12,0	121	180	
CF11.15.06.02	(6 x (2 x 1,5))C	17,0	242	419	
CF11.25.03.02	(3 x (2 x 2,5))C	16,5	210	410	

The Chainflex® types marked with (2) are cables designed as a star-quad.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

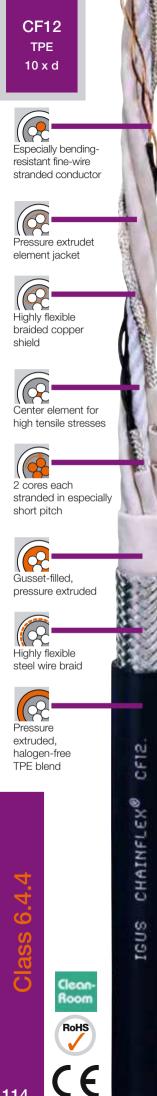
G = with earthed conductor green-yellow x = without earthed conductor

À

Order example: CF11.02.03.02 – in your desired length (0.5 m steps)

CF11 Chainflex® series .02 Code nominal cross section .03 Number of pairs .02 Identification pairs

Please use www.chainflex.eu/en/CF111 for your online order.


Delivery time 24h or today*

* Delivery time means time until shipping of goods

Delivery program Measuring system cable

- ► Page 128, CF211 (PVC)
- **▶ Page 136, CF111.D** (TPE)
- ► Page 140, CF11.D (TPE)

850 types from stock no cutting costs ...

TPE Data cable Chainflex® CF12

- for maximum load requirements
- TPE outer jacket
- double-shielded
- oil-resistant
- bio-oil-resistant
- PVC-free/halogen-free
- hydrolysis-resistant and microbe-resistant

Temperature range

Temperature range

moved

-35 °C to +100 °C, minimum bending radius 10 x d

-40 °C to +100 °C, minimum bending radius 5 x d

fixed

v max.
unsupported/gliding

unsupported/gliding 10 m/s, 6 m/s

a max. 100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m,

Class 4

ŽVV

UV-resistant

High

7∪

Nominal voltage 300/300 V (following DIN VDE 0245).

Testing voltage

1500 V

oil 6

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Hal

Halogen-free Following EN 50267-2-1.

Conductor

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Core stranding

2 cores each stranded in pairs with short pitch lengths, core pairs also stranded with short pitch lengths.

Core identification

Cores < 0.5 mm²: colour code in accordance with DIN 47100

Element shield

Cores ≥ 0.5 mm²: cores black with white numerals Extremely bending-resistant, tinned braided copper shield.

Element jacket

Coverage approx. 70% linear, approx. 90% optical.

TPE mixture adapted to suit the requirements in Energy Chains®

over pair shield.

Inner jacket

TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield

Highly flexible shield consisting of galvanized steel wire braid. Coverage approx. 70% linear, approx. 90% optical.

... no minimum order quantity

CF12 10 x d

Data cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

115

Outer jacket

bw-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements in Energy Chains®.

Colour:dark-blue (similar to **5**011)

Following 2006/95/EG

Lead free Following Eldguideline (B)2002/95/EC.

According to Cass 1. Oter acket material complies with CF9.15.07, tested by PA Clean room

according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, V-resistant
- especially for freely suspended and gliding travel distances up to 400 m
- storage and retrieval units for high-bay warehouses, machining units/machine tools, guick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications, for especially high EM safety

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF12.02.02.02	(2 x (2 x 0,25)C)C	11,0	27	152
CF12.02.03.02 ⁽¹⁾	(3 x (2 x 0,25)C)C	11,5	40	172
CF12.02.04.02	(4 x (2 x 0,25)C)C	11,5	61	179
CF12.02.05.02	(5 x (2 x 0,25)C)C	13,0	93	220
CF12.05.03.02	(3 x (2 x 0,5)C)C	13,0	66	210
CF12.05.04.02	(4 x (2 x 0,5)C)C	14,0	88	255
CF12.05.05.02	(5 x (2 x 0,5)C)C	15,5	110	297
CF12.05.06.02	(6 x (2 x 0,5)C)C	17,0	132	360
CF12.05.08.02	(8 x (2 x 0,5)C)C	20,0	177	477
CF12.05.10.02	(10 x (2 x 0,5)C)C	23,0	221	548
CF12.05.14.02	(14 x (2 x 0,5)C)C	23,0	309	723
CF12.10.06.02	(6 x (2 x 1,0)C)C	20,0	198	542

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G ⇒vith earthed conductor green-yellow x =without earthed conductor

Order example: CF12.02.03.02 - in your desired length (0.5 m steps)

CF12 Chainflex® series .02 Code nominal cross section .03 Number of pairs .02 Identification pairs

Please use www.chainflex.eu/en/CF12 for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Test data ► Page 37

850 types from stock no cutting costs

Selection chart for Chainflex® bus cables

Chainflex® cable	Profibus	Interbus	CAN Bus	DeviceNet	CC-Link	Ethernet/ CAT5	Profinet
CFBUS							
CFBUS.001	V						
CFBUS.002	V						
CFBUS.003	V						
CFBUS.010		~					
CFBUS.011		~					
CFBUS.020			~				
CFBUS.021			~				
CFBUS.022			~				
CFBUS.030				V			
CFBUS.031				V			
CFBUS.035 CC-Link					~		
CFBUS.040						~	
CFBUS.041						V	
CFBUS.042						~	
CFBUS.044 GigE						V	
CFBUS.045						~	
CFBUS.050 CAT6						CAT6	
CFBUS.055 FireWire							
CFBUS.060 Profinet							✓
CFBUS.065 USB							
CFBUS.066 USB							
CF11.LC							
CF11.02.02.02.PBA.LC	V						
CF11.05.01.02.LC			~				
CF11.05.02.02.LC			~				
CF11.02.03.02.IB-S		V					
CF11.02.03.02.10.03.IB-S		~					
CF11.LC.D							
CF11.02.02.02.LC.D			V				
CF11.05.01.02.LC.D			V				
CF11.02.01.02.PBA.LC.D	V						
CF11.02.02.07.03.PBA.LC.D	V						
CF11.02.02.15.04.PBA.LC.D	V						
CF14 CAT5							
CF14.02.02.02.CAT5						V	
CF14.02.04.02.CAT5						V	
CF14.02.05.02.CAT5						V	

FireWire	USB	Characteristic wave impedance $[\Omega]$	Flame- retardant	C€	RoHS		c P11 us	1/4	Halogen-free	Page
		150	~	~	~	~	~	V		118
		150	~	~	~	~	~	~		118
		150	~	~	~	~	~	V		118
		100	~	~	~	~	~	V		118
		100	~	~	~	~	~	V		118
		120	~	~	~	~	~	~		118
		120	~	~	~	~	~	~		118
		120	~	~	~	~	~	~		118
		120	V	~	~	~	~	V		118
		120	~	V	~	~	~	V		118
		110	V	~	~	~	~	V		118
		100	V	~	~	~	~	V		118
		100	~	V	~	~	~	V		118
		100	V	~	~	~	~	V		118
		100	V	~	~	~	~	V		118
		100	~	V	~	~	~	V		118
		100	~	V	~	~	V	~		118
~		100	~	~	~	~	V	V		118
		100	~	~	~	~	V	~		118
	V	100	V	~	~	~	~	V		118
	~	100	~	~	~	~	V	~		118
		150		V	V				V	122
		120		V	~				V	122
		120		~	~				V	122
		100		V	~				V	122
		100		~	~				V	122
		120		V	V			V	V	124
		120		~	~			~	V	124
		150		V	~			~	V	124
		150		~	~			V	V	124
		150		V	~			V	V	124
		100		V	V			V	V	126
		100		~	~			~	V	126
		100		V	V			~	V	126

TPE Bus cable Chainflex® CFBUS

- for maximum load requirements
- TPE outer jacket
- shielded
- oil-resistant
- bio-oil-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

v max.

-35 °C to +70 °C, minimum bending radius 10-12.5 x d

Temperature range fixed

-40 °C to +70 °C, minimum bending radius 5 x d

unsupported/gliding

10 m/s, 6 m/s

a max.

100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m,

UV-resistant

Medium

Nominal voltage

30 V

Testing voltage 500 V

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Conductor

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

According to bus specification.

Core insulation Core stranding

According to bus specification.

Core identification

According to bus specification

Schedule delivery program

Inner jacket

TPE mixture adapted to suit the requirements in Energy Chains®. Extremely bending-resistant, tinned braided copper shield.

Overall shield

Coverage approx. 70% linear, approx. 90% optical.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: violet (similar to RAL 4001)

... no minimum order quantity

CFBUS 10-12.5 x d

Bus cable

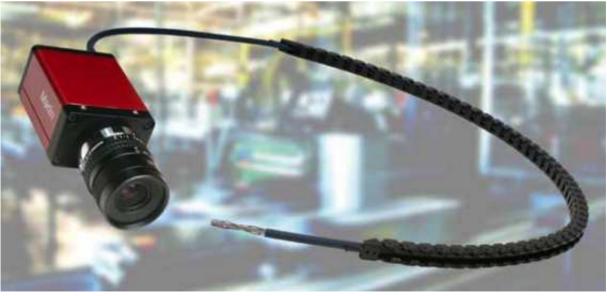
+49-2203-96 49-222 Tel. +49-2203-9649-0

119

UL/CSA Style 1589 and 21371, 30 V, 80 °C

CE Following 2006/95/EG

> **DESINA** According to VDW, DESINA standardisation


Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

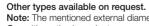
Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended and gliding travel distances up to 400 m
- bus connection cable for storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, indoor cranes, low-temperature applications

Test data ► Page 30

FireWire cable for moving energy supplies in digital camera technology.

TPE Bus cable Chainflex® CFB8


- for maximum load regirements
- TPE outer acket
- shielded
- oil-resistant
- bio-oil-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal cross	diameter in	index	[kg/km]	
	section [mm²]	mm approx.	[kg/km]		
Profibus (minimum ber	nding radius 10 x d)				
CFBUS.001	(2x0,25)C	8,5	23	70	
CFBUS.002	4x1,5(2x0,25)C	12,5	96	175	
CFBUS.003	3x0,75(2x0,25)C	11,0	58	121	
Interbus (minimum ben	iding radius 10 x d)				
CFBUS.010	(3x(2x0,25))C	8,5	42	83	
CFBUS.011	(3x(2x0,25)3x1,0)C	10,0	74	135	
CAN-BUS/Fieldbus (mi	nimum bending radius 10 x d)				
CFBUS.020(2)	(2x(2x0,25))C	7,5	33	66	
CFBUS.021	(2x0,5)C	8,5	36	77	
CFBUS.022(2)	(2x(2x0,5))C	8,5	45	83	
DeviceNet (minimum b	ending radius 10 x d)				
CFBUS.030 Drop	(1x2x XV2 41x2x XV2 2)C 7	,5 3	3 6	5	
CFBUS.031 Trunk	(1x2x XV© 84x2x XV© 5)C 11	,5 9	6 11	0	
CC-Link (minimum ben	ding radius 10 x d)				
CFBUS.035	(3x /AV 20)C	8,5	44	90	
Ethernet/CAT5 (minimu	ım bending radius 12.5 x d)				
CFBUS.040 ⁽²⁾	(2x(2x0,25))C	7,0	33	43	
CFBUS.041	(4x(2x0,25))C	10,0	46	101	
CFBUS.042 ⁽¹⁾	(5x(2x0,25))C	10,5	53	106	
CFBUS.044	(4x(2x0,15))C	8,0	35	79	
CFBUS.045	(4x(2x0,15))C	8,0	35	79	
Ethernet/CAT6 (minimu	ım bending radius 12.5 x d)				
CFBUS.050	(4x(2x0,14)C)C	10,0	77	131	
FireWire (minimum ben	nding radius 12.5 x d)				
CFBUS.055	(2x(2x0,15)C2x(0,34)C)	7,5	42	118	
Profinet (minimum ben	ding radius 12.5 x d)				
CFBUS.060	(4x0,38)C	7,5	37	71	M A
USB (minimum bending	g radius 12.5 x d)				
CFBUS.065	(2x0,54x(2x0,08))C	5,0	26	45	
CFBUS.065 CFBUS.066	(2x0,54x(2x0,08))C (2x0,54x(2x0,24))C	5,0 6,0	26 32	45 56	

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

The Chainflex® types marked with (2) are cables designed as a star-quad.

Delivery program	Characteris-	Number of cores	Colour code
Part No.	tic wave	and conductor	
	impedance	nominal cross	
Profibus	in Ω approx.	section [mm ²]	
CFBUS.001	150	(2x0.25)C	red, green
CFBUS.002	150	4x1.5+	black with white numbers
		(2x0.25)C	red/green
CFBUS.003	150	3x0.75+	black, blue, green-yellow
		(2x0.25)C	red/green
Interbus			
CFBUS.010	100	(3x(2x0.25))C	white/brown, green/yellow, gray/pink
CFBUS.011	100	(3x1.0+	red, blue, green-yellow
		3x(2x0.25))C	white/brown, green/yellow, gray/pink
CAN-BUS/Fieldbus			
CFBUS.020	120	(2x(2x0.25))C	white, green, brown, yellow (star-quad stranding)
CFBUS.021	120	(2x0.5)C	white, brown
CFBUS.022	120	(2x(2x0.5))C	white, green, brown, yellow (star-quad stranding)
DeviceNet			
CFBUS.030 Drop	120	(1x2xAWG24)+	white/blue
		(1x2xAWG22)C	red/black
CFBUS.031 Trunk	120	(1x2xAWG18)+	white/blue
		(1x2xAWG15)C	red/black
CC-Link			
CFBUS.035	110	(3xAWG20)C	white, yellow, blue
Ethernet/CAT5			
CFBUS.040	100	(2x(2x0.25))C	white, green, brown, yellow (star-quad stranding)
CFBUS.041	100	(4x(2x0.25))C	white/brown, green/yellow, gray/pink, blue/red
CFBUS.042	100	(5x(2x0.25))C	white/brown, green/yellow, gray/pink, blue/red, black/violet
CFBUS.044	100	(4x(2x0.15))C	white/brown, green/yellow, gray/pink, blue/red
CFBUS.045	100	(4x(2x0.15))C	white-blue/blue, white-orange/orange, white-green/green,
			white-brown/brown
Ethernet/CAT6			
CFBUS.050	100	(4x(2x0.14)C)C	white/blue, white/orange, white/green, white/brown
FireWire			
CFBUS.055	100	2x(2x0.15)C+	orange/blue, green/red
		2x(0.34)C	black, white
Profinet			
CFBUS.060	100	(4x0,38)C	white/yellow/blue/orange
USB		-	
CFBUS.065	90	2x0.5	red, black
		2x0.08	white, green
CFBUS.066	90	2x0.5	red, black
		2x0.24	white, green

Technical information

The USB, FireWire and GigE-cables shown on these pages were developed for the ambitious industrial usage in E-Chains®. High proofness to oil and lubricants is as secured as protection against electromagnetical interferences. This high mechanical service life was reached with the usage of high quality materials which even care for the electrical safeness. In single cases communication errors can occur, if very different hardware and software is combined. We recommend tests with all components and the cables before starting serial production, to get the proove for a perfect running system. Of course we support you with the details of these electrical tests. Just give us a call!

850 types from stock no cutting costs ...

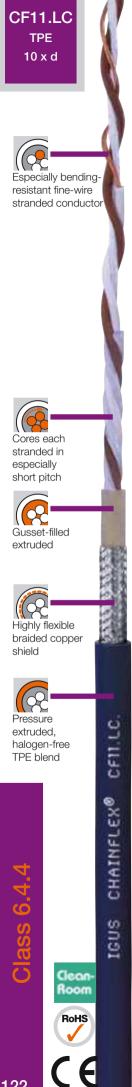
... and order online www.igus.eu/en/CFBUS

(for up to 10 cuts of the same type)

CFBUS TPE 10-12.5 x d

Bus cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222



TPE Bus cable Chainflex® CF11.LC (low capacitance)

- for maximum load requirements
- TPE outer jacket
- shielded
- oil-resistant
- bio-oil-resistant
- PVC-free/halogen-free
- UV-resistant
- hvdrolvsis-resistant and microbe-resistant

Temperature range

unsupported/gliding

moved

Temperature range

-40 °C to +70 °C, minimum bending radius 5 x d

fixed v max.

10 m/s, 6 m/s

a max.

100 m/s²

Travel distance

Testing voltage

Freely suspended and gliding travel distances up to 400 m,

-35 °C to +70 °C, minimum bending radius 10 x d

Class 4

UV-resistant

High

Nominal voltage 30 V

500 V

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant (following VDMA 24568), Class 4

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free Following EN 50267-2-1.

Conductor

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Core insulation

According to bus specification.

Core stranding According to bus specification.

Core identification According to bus specification

Schedule delivery program

Inner jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Sno

Overall shield

Outer jacket

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: dark-blue (similar to RAL 5011)

Following 2006/95/EG

... no minimum order quantity

CF11.LC TPE 10 x d

us cable

Tel. +49-2203-96 49-0 =ax +49-2203-96 49-222

ĵ

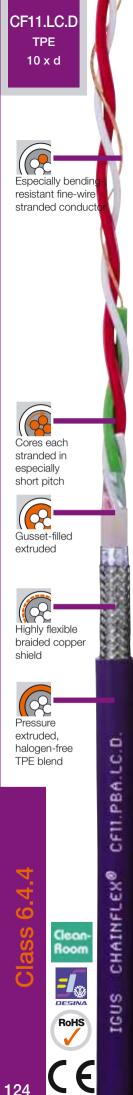
RoHS Lead free

Following EU guideline (RoHS) 2002/95/EC.

According to ISO Class 1. Outer jacket material complies with CF9.15.07, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m
- bus connection cable for storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, indoor cranes, low-temperature applications


Delivery program Part No.	Number of cores and conductor nominal cross section [mm²]	External diameter approx. [mm]	Copper index [kg/km]	Weight [kg/km]
Interbus	cross section [mim]	αρριολ. [ιτιιτι]	[Kg/KIII]	
CF11.02.03.02.IB-S	(3x2x0.25)C	8.5	42	83
CF11.02.03.02.10.03.IB-S	(3x2x0.25+3x1.0)C	10.0	74	135
CAN-Bus				
CF11.05.01.02.LC	(1x2x0.5)C	8.5	36	77
CF11.05.02.02.LC(2)	(2x2x0.5)C	8.5	45	83
CF11.02.02.02.PBA.LC(2)	(2x(2x0.25))C	8.5	33	80

The Chainflex® types marked with (2) are cables designed as a star-quad.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Delivery program	Characteris-	Number of cores	Colour code
Part No.	tic wave	and conductor	
	impedance	nominal cross	
Interbus	approx. $[\Omega]$	section [mm²]	
CF11.02.03.02.IB-S	100	(3x(2x0.25))C	white/brown, green/yellow, gray/pink
CF11.02.03.02.10.03.IB-S	100	(3x2x0.25+	white/brown, green/yellow, gray/pink
		3x1.0)C	red, blue, green-yellow
CAN-Bus			
CF11.05.01.02.LC	120	(2x0.5)C	white, brown
CF11.05.02.02.LC	120	(2x(2x0.5))C	white, green, brown, yellow (star-quad stranding)
Profibus			
CF11.02.02.02.PBA.LC	150	(2x(2x0.25))C	green/red, yellow/brown

TPE Bus cable Chainflex® CF11.LC.D (low capacitance)

- for maximum load requirements
- TPE outer jacket
- shielded
- PVC-free/halogen-free
- oil-resistant
- bio-oil-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

-35 °C to +70 °C, minimum bending radius 10 x d

v max.

Temperature range fixed

-40 °C to +70 °C, minimum bending radius 5 x d

unsupported/gliding

10 m/s, 6 m/s

a max.

100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m,

Class 4

UV-resistant

Medium

Nominal voltage 30 V

Testing voltage 500 V

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Oil

Silicon-free

Conductor

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free Following EN 50267-2-1.

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Core insulation According to bus specification.

Core stranding According to bus specification.

Core identification According to bus specification > Schedule delivery program

CHAINFLEX®

IGUS

Inner jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical. Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: violet (similar to RAL 4001)

Following 2006/95/EG

DESINA According to VDW, DESINA standardisation

no minimum order quantity

CF11.LC.D 10 x d

3us cable

+49-2203-96 49-222 Fel. +49-2203-96 49-0

125

Lead free Following EU guideline (RoHS) 2002/95/EC.

RoHS

Clean room

According to ISO Class 1. Outer jacket material complies with CF9.15.07, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended and gliding travel distances up to 400 m
- bus connection cable for storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, indoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
Profibus	cross section [mm²]	approx. [mm]	[kg/km]		
CF11.02.01.02.PBA.LC.D	(1x(2x0.25)C	8.5	23	70	
CF11.02.02.15.04.PBA.LC.D	(4x1.5+(2x0.25)C)	12.5	96	175	
CF11.02.02.07.03.PBA.LC.D	(3x0.75+(2x0.25)C)	11.0	58	121	
Fieldbus (CAN-Bus)					
CF11.02.02.02.LC.D ⁽²⁾	(2x(2x0.25)C	7.5	33	66	
CF11.05.01.02.LC.D	(1x(2x0.5)C	8.5	36	77	

The Chainflex® types marked with (2) are cables designed as a star-quad.

Other types available on request.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Delivery program	Characteris-	Number of cores	Colour code
Part No.	tic wave	and conductor	
	impedance	nominal cross	
Profibus	approx. $[\Omega]$	section [mm²]	
CF11.02.01.02.PBA.LC.D	150	(1x(2x0.25))C	red/green
CF11.02.02.15.04.PBA.LC.D	150	(4x1.5+	black with white numbers
		(2x0.25)C)	red/green
CF11.02.02.07.03.PBA.LC.D	150	(3x0.75+	black, blue, green-yellow
		(2x0.25)C)	red/green
Fieldbus (CAN-Bus)			
CF11.02.02.02.LC.D	120	(2x(2x0.25))C	white, green, brown, yellow (star-quad stranding)
CF11.05.01.02.LC.D	120	(1x(2x0.5))C	white/brown

Order example: CF11.02.03.02.IB-S – in your desired length (0.5 m steps)

CF11.LC Chainflex® series .02 Code nominal cross section .03 Number of pairs

.02 Identification pairs .IB-S Special identification

Please use www.chainflex.eu/en/CF11LCD for your online order.



Delivery time 24h or today*

Delivery time means time until shipping of goods

Test data ► Page 30

850 types from stock no cutting costs

TPE Bus cable Chainflex® CF14 CAT5

- Ethernet special cable for maximum load requirements
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- PVC-free/halogen-free
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

Temperature range

unsupported/gliding

moved

-35 °C to +70 °C, minimum bending radius 12.5 x d

fixed

v max.

-40 °C to +70 °C, minimum bending radius 7.5 x d

a max. 100 m/s²

Travel distance Freely suspended and gliding travel distances up to 100 m,

Class 3

10 m/s, 6 m/s

UV-resistant Medium

Nominal voltage 30 V

Testing voltage 500 V

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free Following EN 50267-2-1.

19-wire conductor consisting of bare copper wires in especially Conductor

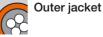
bending-resistant braiding quality.

Core insulation Special PP-isolating mixture.

Core stranding 2 cores each stranded in pairs with short pitch lengths, core

pairs also stranded with short pitch lengths.

Core identification Colour code in accordance with DIN 47100



Inner jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield.

> Coverage approx. 70% linear, approx. 90% optical. Low-adhesion mixture on the basis of TPE, especially abrasion-

resistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: violet (similar to RAL 4001)

... no minimum order quantity

CF14

+49-2203-96 49-222

12.5 x d

Bus cable

Fel. +49-2203-96 49-0

127

DESINA According to VDW, DESINA standardisation

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with CF9.15.07, tested by IPA

according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended and gliding travel distances up to 100 m
- ethernet cable for Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, indoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
Ethernet CAT5	cross section [mm²]	approx. [mm]	[kg/km]	
CF14.02.02.02.CAT5(2)	(2x2x0.25)C	7.0	33	43
CF14.02.04.02.CAT5	(4x2x0.25)C	10.0	46	101
CF14.02.05.02.CAT5	(5x2x0.25)C	10.5	53	106

The Chainflex® types marked with (2) are cables designed as a star-quad.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Delivery program	Characteris-	Number of cores	Colour code
Part No.	tic wave	and conductor	
	impedance	nominal cross	
Ethernet CAT5	approx. $[\Omega]$	section [mm²]	
CF14.02.02.02.CAT5	100	(2x(2x0.25))C	white, green, brown, yellow (star-quad stranding)
CF14.02.04.02.CAT5	100	(4x(2x0.25))C	white/brown, green/yellow, gray/pink, blue/red
CF14.02.05.02.CAT5	100	(5x(2x0.25))C	white/brown, green/yellow, gray/pink, blue/red,
			black/violet

Order example: CF14.02.02.02.CAT5 – in your desired length (0.5 m steps)

CF14 CAT5 Chainflex® series .02 Code nominal cross section .02 Number of pairs

.02 Identification pairs .CAT5 CAT5 identification

Please use www.chainflex.eu/en/CF14 for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Test data ► Page 28 More CAT5/CAT6 cables ► Page 118, CFBUS

850 types from stock no cutting costs

PVC Measuring system cable Chainflex® CF211

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed v max.

unsupported/gliding

-5 °C to +70 °C, minimum bending radius 10 x d

-20 °C to +70 °C, minimum bending radius 5 x d

a max.

50 m/s²

5 m/s, 3 m/s

Travel distance

Freely suspended and gliding travel distances up to 100 m,

Class 3

Nominal voltage

30 V

500 V

Testing voltage

oil 🜢

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1),

Class 2

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Conductor

Very finely stranded special cores of particularly high-flex

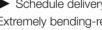
design made of bare copper wires.

Core insulation

Mechanically high-quality PP mixture.

Core stranding

According to measuring system specification.


Core identification

According to measuring system specification

Element shield

Schedule delivery program

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Intermediate sheath

Foil taping over the external layer.

Element jacket

TPE mixture adapted to suit the requirements in Energy Chains®

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Outer jacket

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the requirements in Energy Chains®

(following DIN VDE 0282 Part 10). Colour: gray (similar to RAL 7001)

... no minimum order quantity

CF211 10 x d

Measuring system cable

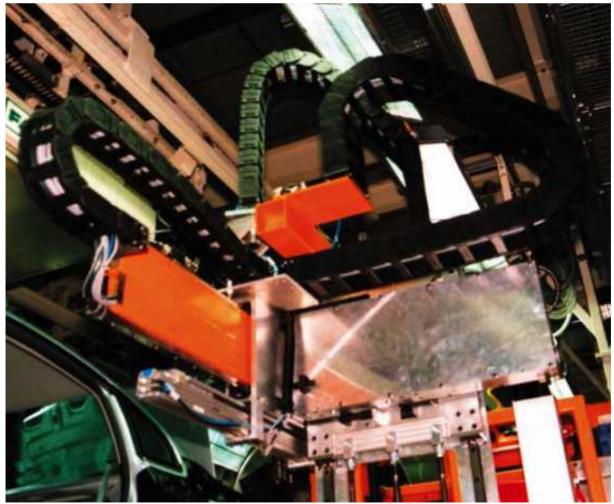
+49-2203-96 49-222 Tel. +49-2203-9649-0

129

UL/CSA Style 1589 and 2502, 30 V, 80 °C

CEI Following CEI 20-35

Following 2006/95/EG


Lead free Following EU guideline (RoHS) 2002/95/EC

Clean room According to ISO Class 2. Outer jacket material complies with CF5.10.07, tested by

IPA according to standard 14644-1

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, handling, indoor cranes

Three Energy Chain Systems® in several axes fitted with specially cables from igus®. E-Chain®: System E4/00 and System E4/0

850 types from stock no cutting costs ... and order online www.igus.eu/en/CF211M (for up to 10 cuts of the same

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Delivery program* Part No.	Number of cores and conductor nominal cross section [mm²]	External diameter approx. [mm]	Copper index [kg/km]	Weight [kg/km]
CF211.001	(3x(2x0.14)C+			
	(4x0.14)+(2x0.5))C	9.0	61	100
CF211.002	(3x(2x0.14)C+(2x0.5C))C	9.0	63	110
CF211.006	(3x(2x0.14)C+			
	2x0.5+4x0.14+4x0.23)C	9.5	72	120
CF211.009	(4x(2x0.25)+2x0.5)c	9.0	51	111
CF211.010	(4x(2x0.25)+2x1.0)C	9.5	74	141
CF211.011	(4x(2x0.34)+4x0.5)C	9.0	75	135
CF211.014	(4x(2x0.25)C+1x2x0.5)C	13.0	84	211
CF211.016	(3x(2x0.25)C)C	11.0	85	170
CF211.017	(4x(2x0.14)+			
	4x1.0+(4x0.14)C)C	9.0	85	124
CF211.018	(2x(2x0.25)+2x0.5)C	7.0	41	62
CF211.019	(3x0.25+3x(2x0.25)C+			
	2x1.0)C	9.0	82	115
CF211.027	(5x(2x0.14)+2x0.5)C	9.0	45	102

^{*} Previous product numbers - see reference list on page 482

Other types available on request.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF211.001 – in your desired length (0.5 m steps)

CF211 Chainflex® series .001 Code Measuring system

Please use www.chainflex.eu/en/CF211M for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Delivery

CF211.018

CF211.019

CF211.027

	JS ®
O	

program	conductor nominal		
Part No.	cross section [mm²]		
CF211.001	(3x(2x0.14)C+	3x(2x0.14)C	yellow/green, black/brown, red/orange
	(4x0.14)+(2x0.5))C	4x0.14	gray, blue, white-yellow, white-black
		2x0.5	brown-red, brown-blue
CF211.002	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
	(2x0.5C))C	2x0.5C	black, red
CF211.006	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
	2x0.5+4x0.14+	4x0.14	gray, blue, white-yellow, white-black
	4x0.23)C	4x0.23	brown-yellow, brown-gray, green-black, green-red
		2x0.5	brown-red, brown-blue
CF211.009	(4x(2x0.25)+(2x0.5))C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
		2x0.5	white, brown
CF211.010	(4x(2x0.25)+(2x1.0))C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
		2x1.0	white, brown
CF211.011	(4x(2x0.34)+(4x0.5))C	4x(2x0.34)	black/brown, red/orange, yellow/green, blue/violet
		4x0.5	blue-white, black-white, red-white, yellow-white
CF211.014	(4x(2x0.25)C+	4x(2x0.25)C	white/brown, green/yellow, gray/pink, blue/red
	(2x0.5))C	2x0.5	black (numeral printing 1-2)
CF211.016	(3x(2x0.25)C)C	3x(2x0.25)C	white/brown, green/yellow, gray/pink
CF211.017	(4x(2x0.14)+	(4x0.14)C	blue-black, red-black, yellow-black, green-black
	(4x1.0)+(4x0.14)C)C	4x(2x0.14)	red/black, green/brown, yellow/violet, pink/gray
		4x1.0	white-green, brown-green, blue, white

red/black, gray/pink

blue, yellow, violet

white-green, white-red

brown/green, pink/gray, red/black

green/brown, gray/yellow, white/violet, black/red, blue/pink

white, brown

white, brown

2x(2x0.25)

3x(2x0.25)

5x(2x0.14)

(3x0.25)

(2x1.0)

2x0.5

2x0.5

| Number of cores and | Core group | Colour code

CF211 PVC

10 x d

Measuring system cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

(2x(2x0.25)+(2x0.5))C

3x(2x0.25)C+(2x1.0))C

((3x0.25)+

(5x(2x0.14)

+(2x0.5))C

PUR Measuring system cable Chainflex® CF113.D

- for maximum load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant
- PVC-free/halogen-free

Temperature range

moved

v max.

-20 °C to +80 °C, minimum bending radius 10 x d

Temperature range

-40 °C to +80 °C, minimum bending radius 5 x d

unsupported/gleitend 5 m/s, 3 m/s

a max.

50 m/s²

Travel distance

Freely suspended and gliding travel distances up to 100 m,

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Class 3

UV-resistant Medium

Nominal voltage 30 V

Testing voltage 500 V

Offshore

MUD-resistant following NEK 606

Class 3

Flame-retardant According to IEC 332-1, CEI 20-35, FT1

Halogen-free Following EN 50267-2-1

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992). Conductor

Fine-wire stranded conductor in especially bending-resistant

version consisting of bare copper wires (following EN 60228).

Core insulation Mechanically high-quality PP mixture.

Core stranding

According to measuring system specification

According to measuring system specification

SOS

Core identification

➤ Schedule Delivery Program

Element shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

... no minimum order quantity

Class 6.3.3

Inner jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70%

linear, approx. 90% optical.

Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit Outer jacket

the requirements in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: green (similar to RAL 6018)

UL/CSA Style 1589 and 20236, 30 V, 80 °C

CEI Following CEI 20-35

Following 2006/95/EG

DESINA According to VDW, DESINA standardisation

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean room According to ISO Class 1. Outer jacket material complies with CF27.07.05.02.01.D.

tested by IPA according to standard 14644-1

Typical application area

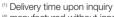
- for maximum load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, indoor cranes, low-temperature applications

CF113.D **PUR** 10 x d

Measuring system cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Fax



- for maximum load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant
- PVC-free/halogen-free

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF113.001.D	(3x(2x0.14)C+(4x0.14)+			
	(2x0.5))C	12.0	90	203
CF113.002.D ⁽¹⁾	(3x(2x0.14)C+(2x0.5C))C	12.0	96	212
CF113.003.D ⁽¹⁾	(3x(2x0.14)+2x1.0)C	9.5	59	132
CF113.004.D	(4x(2x0.14)+(4x0.14)C+			
	4x0.5)C	12.0	90	214
CF113.005.D ⁽¹⁾	(4x(2x0.14)+4x0.5)C	10.0	64	107
CF113.006.D ⁽¹⁾	(3x(2x0.14)C+			
	2x0.5+4x0.14+			
	4x0.23)C	11.5	92	180
CF113.007.D ⁽¹⁾	(2x(2x0.34))C	6.5	24	47
CF113.008.D ⁽¹⁾	(3x(2x0.25))C	8.5	33	97
CF113.009.D ⁽¹⁾	(4x(2x0.25)+2x0.5)C	10.0	63	142
CF113.010.D ⁽¹⁾ (4x(2x0.25)+2x1.0)C		10.5	75	158
CF113.011.D ⁽¹⁾ (4x(2x0.34)+4x0.5)C		11.0	84	176
CF113.012.D ⁽¹⁾	(3x(2x0.14)C+			
	(2x0.5+6x0.14)+			
	(1x(3x0.14)C)C	12.0	94	184
CF113.013.D ⁽¹⁾ (3x(2x0.14)C+2x0.5)C		9.0	54	122
CF113.015.D	(4x(2x0.14)+4x0.5)C	10.0	64	107
CF113.017.D(1/4)	(4x(2x0.14)+4x1.0+			
	(4x0.14)C)C	13.0	114	236
CF113.018.D(1/4)	(2x(2x0.25)+2x0.5)C	9.0	48	114
CF113.019.D(1/4)	(3x0.25+3x(2x0.25)C+			
	2x1.0)C	11.5	108	208
CF113.021.D ⁽¹⁾	(6x0.5+5x2x0.25)C	13.0	102	227
CF113.022.D ⁽¹⁾	(5x0.5+1x2x0.25)C	9.0	49	115
CF113.025.D ⁽¹⁾	(3x(2x0.14)C+(2x0.5)C)C	12.0	96	226
CF113.027.D ⁽¹⁾	(5x(2x0.14)+2x0.5)C	10.0	57	138
CF113.028.D	(2x(2x0.15)+(2x0.38))C	7.5	47	72

⁽⁴⁾ manufactured without inner jacket

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

CF113.D PUR 10 x d

Measuring system cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

Delivery pro-	Number of cores and conductor	Core group	Colour code
gram Part No.	nominal cross section [mm²]	0 (0 0 : :: =	
CF113.001.D	(3x(2x0.14)C+	3x(2x0.14)C	yellow/green, black/brown, red/orange
	(4x0.14)+(2x0.5))C	4x0.14	gray, blue, white-yellow, white-black
		2x0.5	brown-red, brown-blue
CF113.002.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
	(2x0.5C))C	2x0.5C	black, red
CF113.003.D	(3x(2x0.14)+(2x1.0))C	3x(2x0.14) 2x1.0	white/brown, green/yellow, gray/pink blue, red
CF113.004.D	(4x(2x0.14)+	4x(2x0.14)	brown/green, violet/yellow, gray/pink, red/black
	(4x0.14)C+(4x0.5))C	(4x0.14)C	yellow-black, red-black, green-black, blue-black
		4x0.5	brown-green, white-green, blue, white
CF113.005.D	(4x(2x0.14)+(4x0.5))C	4x(2x0.14)	white/brown, green/yellow, gray/pink, blue/red
	, , , , , , , , , , , , , , , , , , , ,	4x0.5	black, violet, gray-pink, red-blue
CF113.006.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
	2x0.5+4x0.14+	4x0.14	gray, blue, white-yellow, white-black
	4x0.23)C	4x0.23	brown-yellow, brown-gray, green-black, green-red
	,,	2x0.5	brown-red, brown-blue
CF113.007.D	(2x(2x0.34))C	4x0.34	white, brown, green, yellow
CF113.008.D	(3x(2x0.25))C	3x(2x0.25)	white/brown, green/yellow, gray/pink
CF113.009.D	(4x(2x0.25)+(2x0.5))C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
OI 113.003.D	(4)(2)(-20)+(2)(-0)(0)	2x0.5	white, brown
CF113.010.D	(4x(2x0.25)+(2x1.0))C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
OI 113.010.D	(4)(2)(2)(1.0)(0	2x1.0	white, brown
CF113.011.D	(4x(2x0.34)+(4x0.5))C	4x(2x0.34)	black/brown, red/orange, yellow/green, blue/violet
CF113.011.D	(4x(2x0.34)+(4x0.3))0	4x(2x0.54) 4x0.5	blue-white, black-white, red-white, yellow-white
CF113.012.D	(2)(2)(1)(1)		· ·
CF113.012.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, white/gray, blue/red
	(2x0.5+6x0.14)+	(3x0.14)C 6x0.14	red, green, brown
	(3x0.14)C)C		blue, gray, gray, yellow, pink, violet
05110 010 D	(0(00.4.4).0(00.5)\\0	2x0.5	brown-red, brown-blue
CF113.013.D	(3x(2x0.14)C+(2x0.5))C	3x(2x0.14)C	white/brown, green/yellow, gray/pink
05110 015 D	(4) (0) (0 d 4) (4) (0 E\\0	2x0.5	red, blue
CF113.015.D	(4x(2x0.14)+(4x0.5))C	4x(2x0.14) 4x0.5	brown/green, violet/yellow, gray/pink, red/black blau, white, brown-green, white-green
CF113.017.D	(4x(2x0.14)+	(4x0.14)C	blue-black, red-black, yellow-black, green-black
	(4x1.0)+(4x0.14)C)C	4x(2x0.14)	red/black, green/brown, yellow/violet, pink/gray
		4x1.0	white-green, brown-green, blue, white
CF113.018.D	(2x(2x0.25)+(2x0.5))C	2x(2x0.25)	red/black, gray/pink
		2x0.5	white, brown
CF113.019.D	((3x0.25)+	3x(2x0.25)C	brown/green, pink/gray, red/black
	3x(2x0.25)C+(2x1.0))C	3x0.25	blue, yellow, violet
		2x1.0	white, brown
CF113.021.D	((6x0.5)+5x(2x0.25))C	(3x0.5)	black (numeral printing 1-3)
		(3x0.5)	red (numeral printing 1-3)
		5x(2x0.25)	yellow/white, gray/white, black/orange, white/brown, black/gray
CF113.022.D	((5x0.5)+(2x0.25))C	(5x0.5)	blue, green, yellow, gray, pink
	, , , , , , , , , , , , , , , , , ,	(2x0.25)	white, brown
CF113.025.D	(3x(2x0.14)C+	3x(2x0.14)	green/yellow, blue/red, gray/pink
	(2x0.5)C)C	(2x0.5)	white, brown
CF113.027.D	(5x(2x0.14)+	5x(2x0.14)	green/brown, gray/yellow, white/violet, black/red, blue/pink
	(2x0.5))C	(2x0.5)	white-green, white-red
CF113.028.D	(2x(2x0.15)+	(2x(2x0.15)	green/yellow; pink/blue
	,,	(-/(-/(0.10)	J. 2 , J 0 0 , D

TPE Measuring system cable Chainflex® CF111.D

- for medium load requirements
- TPE outer jacket
- shielded
- oil-resistant
- bio-oil-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed v max.

unsupported

-35 °C to +100 °C, minimum bending radius 12 x d

-40 °C to +100 °C, minimum bending radius 6 x d

a max.

30 m/s²

2 m/s

Travel distance

Freely suspended travel distances, Class 1

UV-resistant

Medium

Nominal voltage 30 V

Testing voltage 500 V

oil €

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Conductor

Very finely stranded special cores of particularly high-flex

design made of bare copper wires.

Core insulation

Mechanically high-quality PP mixture.

Core stranding

According to measuring system specification.

Core identification

According to measuring system specification

Element shield

Schedule delivery program

Bending-resistant, tinned braided copper shield. Coverage approx. 55% linear, approx. 80% optical.

Intermediate sheath

Foil taping over the external layer.

Overall shield

Bending-resistant, tinned braided copper shield. Coverage approx. 55% linear, approx. 80% optical.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in Energy Chains®.

Colour: green (similar to RAL 6018)

... no minimum order quantity

CF111.D 12 x d

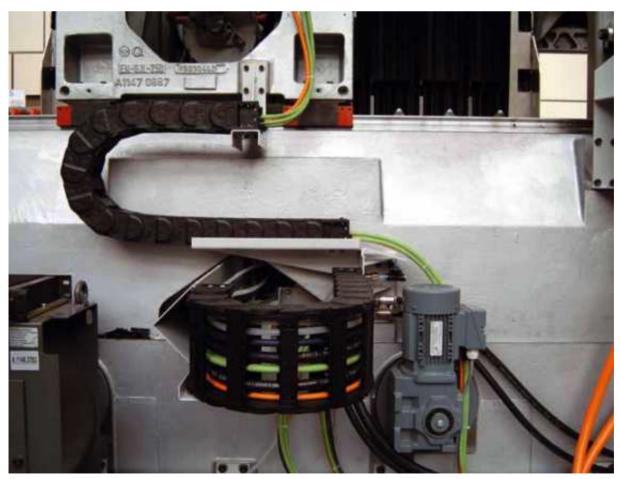
Measuring system cable

UL/CSA Style 1589 and 21371, 30 V, 80 °C

CEI Following CEI 20-35

Following 2006/95/EG

DESINA According to VDW, DESINA standardisation


Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by

IPA according to standard 14644-1

Typical application area

- for medium load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended travel distances
- machining units/machine tools, low temperature applications

The ReadyChain® systems from igus® are completely pre-assembled with Chainflex® cables, hoses, screw attachments, metal parts etc.

850 types from stock no cutting costs
... and order online www.igus.eu/en/CF111D (for up to 10 cuts of the same)

(for up to 10 cuts of the same type)

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Class 4.1.

TPE Measuring system cable Chainflex® CF111.D

- for high load requirements
- TPE outer jacket
- shielded
- oil-resistant
- bio-oil-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF111.001.D	(3x(2x0.14)C+			
	(4x0.14)+(2x0.5))C	8.5	56	87
CF111.004.D	(4x(2x0.14)+			
	(4x0.14)C+4x0.5)C	10.5	72	113
CF111.006.D	(3x(2x0.14)C+			
	2x0.5+4x0.14+4x0.23)C	10.0	69	112
CF111.011.D	(4x(2x0.34)+4x0.5)C	9.5	69	106
CF111.015.D	(4x(2x0.14)+4x0.5)C	8.0	49	76
CF111.021.D	(6x0.5+5x2x0.25)C	10.0	79	125
CF111.022.D	(5x0.5+1x2x0.25)C	8.0	49	78
CF111.027.D ⁽¹⁾	(5x(2x0.14)+2x0.5)C	9.0	54	109
CF111.028.D	(2x(2x0.15)+2x0.38)C	7.5	41	64
CF111.035.D	(4x(2x0.25)C+2x(2x0.5))C	12.5	118	202

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF111.021.D – in your desired length (0.5 m steps)

CF111.D Chainflex® series .001 Code Measuring system

Please use www.chainflex.eu/en/CF111D for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

Class 4.1.4

Part No.	Number of cores and conductor	Core group	Colour code
	nominal cross section [mm²]		
CF111.001.D	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	3x(2x0.14)C	yellow/green, black/brown, red/orange
		4x0.14	gray, blue, white-yellow, white-black
		2x0.5	brown-red, brown-blue
CF111.004.D	(4x(2x0.14)+(4x0.14)C+(4x0.5))C	4x(2x0.14)	brown/green, violet/yellow, gray/pink, red/black
		(4x0.14)C	yellow-black, red-black, green-black, blue-black
		4x0.5	brown-green, white-green, blue, white
CF111.006.D	(3x(2x0.14)C+2x0.5+	3x(2x0.14)C	green/yellow, black/brown, red/orange
	4x0.14+4x0.23)C	4x0.14	gray, blue, white-yellow, white-black
		4x0.23	brown-yellow, brown-gray, green-black, green-red
		2x0.5	brown-red, brown-blue
CF111.011.D	(4x(2x0.34)+(4x0.5))C	4x(2x0.34)	black/brown, red/orange, yellow/green, blue/violet
		4x0.5	blue-white, black-white, red-white, yellow-white
CF111.015.D	(4x(2x0.14)+(4x0.5))C	4x(2x0.14)	brown/green, violet/yellow, gray/pink, red/black
		4x0.5	blue, white, brown-green, white-green
CF111.021.D	((6x0.5)+5x(2x0.25))C	(3x0.5)	black with numerals 1-3
		(3x0.5)	red with numerals 1-3
		(5x2x0.25)	yellow/white, gray/white, black/orange,
			white/brown, black/gray
CF111.022.D	((5x0.5)+(2x0.25))C	(5x0.5)	blue, green, yellow, gray, pink
		(2x0.25)	white, brown
CF111.027.D	(5x(2x0.14)+2x0.5)C	5x(2x0.14)	green/brown, gray/yellow, white/violet, black/red, blue/pink
		2x0.5	white-green, white-red
CF111.028.D	(2x(2x0.15)+(2x0.38))C	2x(2x0.15)	green/yellow, pink/blue
		2x0.38	red, black
CF111.035.D	(4x(2x0.25)C+2x(2x0.5))C	4x(2x0.15)C	white, brown, green, yellow, gray, pink, blue, red
		2x(2x0.5)	black (numeral printing 1-4)

CF111.D 12 x d

Measuring system cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

TPE Measuring system cable Chainflex® CF11.D

- for maximum load requirements
- TPE outer jacket
- shielded
- twisted-pair
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

-35 °C to +100 °C, minimum bending radius 10 x d

-40 °C to +100 °C, minimum bending radius 5 x d

10 m/s, 6 m/s

a max.

100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m,

UV-resistant Medium

Nominal voltage 30 V

Testing voltage 500 V

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1.

Conductor

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality PP mixture.

Core stranding

According to measuring system specification.

Core identification

According to measuring system specification

Schedule delivery program

Element shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Inner jacket

TPE mixture adapted to suit the requirements in Energy Chains®.

SOS

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the require-

ments in Energy Chains®.

Colour: green (similar to RAL 6018)

... no minimum order quantity

CF11.D 10 x d

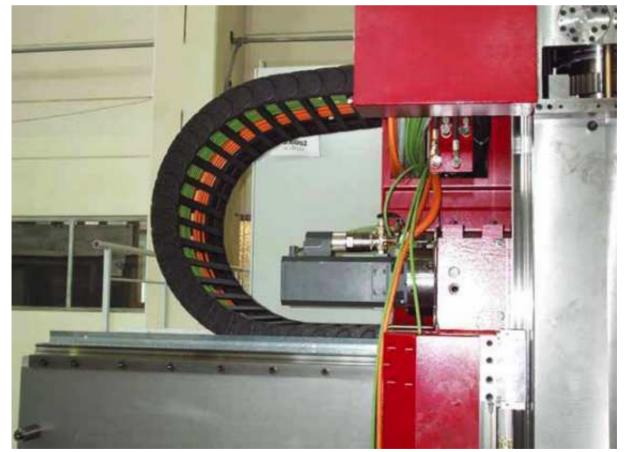
Measuring system cable

+49-2203-96 49-222

Tel. +49-2203-96 49-0

Following 2006/95/EG

DESINA According to VDW, DESINA standardisation


Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by

IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended and gliding travel distances up to 400 m
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

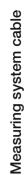
Pre-assembled igus® energy supply systems for machine tool manufacture. E-Chain®: System E4/4

- for maximum load requirements
- TPE outer jacket
- shielded
- twisted-pair
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- hydrolysis-resistant and microbe-resistant

Delivery program*	Number of cores and External		Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CF11.001.D	(3x(2x0.14)C+			
	(4x0.14)+(2x0.5))C	10.5	78	130
CF11.002.D	(3x(2x0.14)C+(2x0.5C))C	10.5	66	120
CF11.003.D	(3x(2x0.14)+2x1.0)C	8.0	50	90
CF11.004.D	(4x(2x0.14)+			
	(4x0.14)C+4x0.5)C	12.0	93	184
CF11.005.D	(4x(2x0.14)+4x0.5)C	9.0	64	105
CF11.006.D	(3x(2x0.14)C+			
	2x0.5+4x0.14+4x0.23)C		1	125
CF11.007.D	(2x(2x0.34))C	7.5	31	70
CF11.008.D	(3x(2x0.25))C	8.5	35	85
CF11.009.D	(4x(2x0.25)+2x0.5)C	9.5	63	115
CF11.010.D	(4x(2x0.25)+2x1.0)C	9.5	75	130
CF11.011.D	(4x(2x0.34)+4x0.5)C	10.5	77	130
CF11.012.D	(3x(2x0.14)C+			
	(2x0.5+6x0.14)+			
	(1x(3x0.14)C)C	12.0	94	163
CF11.013.D	(3x(2x0.14)C+2x0.5)C		78	115
CF11.015.D	(4x(2x0.14)+4x0.5)C	9.0	64	105
CF11.017.D(4)	(4x(2x0.14)+4x1.0+			
	(4x0.14)C)C	9.0	85	160
CF11.018.D ⁽⁴⁾	(2x(2x0.25)+2x0.5)C	7.0	41	57
CF11.019.D(4)	(3x0.25+3x(2x0.25)C+			
	2x1.0)C	9.0	82	112
CF11.021.D	(6x0.5+5x2x0.25)C	12.5	105	171
CF11.022.D	(5x0.5+1x2x0.25)C	8.5	60	90
CF11.025.D	(3x(2x0.14)C+(2x0.5)C)C	12.5	120	170
CF11.027.D	(5x(2x0.14)+2x0.5)C	9.5	59	113

^{*} Previous product numbers – see reference list on page 483

G = with earthed conductor green-yellow x = without earthed conductor



⁽⁴⁾ manufactured without inner jacket

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

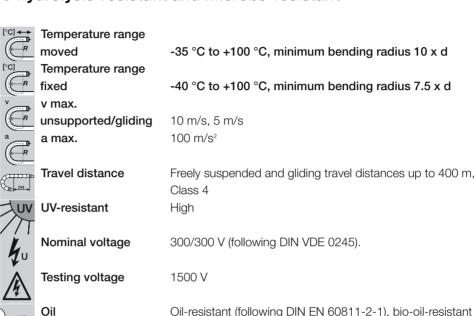
CF11.D

10 x d

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

+	
---	--

Part No.	Number of cores and conduc-	Core group	Colour code
	tor nominal cross section [mm²]		
CF11.001.D	(3x(2x0.14)C+	3x(2x0.14)C	yellow/green, black/brown, red/orange
	(4x0.14)+(2x0.5))C	4x0.14	gray, blue, white-yellow, white-black
		2x0.5	brown-red, brown-blue
CF11.002.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
	(2x0.5C))C	2x0.5C	black, red
CF11.003.D	(3x(2x0.14)+(2x1.0))C	3x(2x0.14)	white/brown, green/yellow, gray/pink
		2x1.0	blue, red
CF11.004.D	(4x(2x0.14)+	4x(2x0.14)	brown/green, violet/yellow, gray/pink, red/black
	(4x0.14)C+(4x0.5))C	(4x0.14)C	yellow-black, red-black, green-black, blue-black
		4x0.5	brown-green, white-green, blue, white
CF11.005.D	(4x(2x0.14)+(4x0.5))C	4x(2x0.14)	white/brown, green/yellow, gray/pink, blue/red
		4x0.5	black, violet, gray-pink, red-blue
CF11.006.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
	(2x0.5+2x0.14)+	4x0.14	gray, blue, white-yellow, white-black
	(4x0.23+2x0.14))C	4x0.23	brown-yellow, brown-gray, green-black, green-red
		2x0.5	brown-red, brown-blue
CF11.007.D	(2x(2x0.34))C	4x0.34	white, brown, green, yellow
CF11.008.D	(3x(2x0.25))C	3x(2x0.25)	white/brown, green/yellow, gray/pink
CF11.009.D	(4x(2x0.25)+(2x0.5))C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
		2x0.5	white, brown
CF11.010.D	(4x(2x0.25)+(2x1.0))C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
		2x1.0	white, brown
CF11.011.D	(4x(2x0.34)+(4x0.5))C	4x(2x0.34)	black/brown, red/orange, yellow/green, blue/violet
		4x0.5	blue-white, black-white, red-white, yellow-white
CF11.012.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, white/gray, blue/red
	(2x0.5+6x0.14)+	(3x0.14)C	red, green, brown
	(3x0.14)C)C	6x0.14	blue, gray, gray, yellow, pink, violet
		2x0.5	brown-red, brown-blue
CF11.013.D	(3x(2x0.14)C+(2x0.5))C	3x(2x0.14)C	white/brown, green/yellow, gray/pink
		2x0.5	red, blue
CF11.015.D	(4x(2x0.14)+(4x0.5))C	4x(2x0.14)	brown/green, violet/yellow, gray/pink, red/black
		4x0.5	blue, white, brown-green, white-green
CF11.017.D	(4x(2x0.14)+	(4x0.14)C	blue-black, red-black, yellow-black, green-black
	(4x1.0)+ (4x0.14)C)C	4x(2x0.14)	red/black, green/brown, yellow/violet, pink/gray
		4x1.0	white-green, brown-green, blue, white
CF11.018.D	(2x(2x0.25)+(2x0.5))C	2x(2x0.25)	red/black, gray/pink
		2x0.5	white, brown
CF11.019.D	((3x0.25)+	3x(2x0.25)C	brown/green, pink/gray, red/black
	3x(2x0.25)C+2x1.0))C	3x0.25	blue, yellow, violet
		2x1.0	white, brown
CF11.021.D	((6x0.5)+5x(2x0.25))C	(3x0.5)	black with numerals 1-3
		(3x0.5)	red with numerals 1-3
		(5x2x0.25)	yellow/white, gray/white, black/orange, white/brown, black/gray
CF11.022.D	((5x0.5)+ (2x0.25))C	(5x0.5)	blue, green, yellow, gray, pink
		(2x0.25)	white, brown
CF11.025.D	(3x(2x0.14)C+	3x(2x0.14)	green/yellow, blue/red, gray/pink
	(2x0.5)C)C	(2x0.5)	white, brown
CF11.027.D	(5x(2x0.14)+	5x(2x0.14)	green/brown, gray/yellow, white/violet, black/red, blue/pink
	2x0.5)C	2x0.5	white-green, white-red



TPE Koax cable Chainflex® CF Koax 1

- 75 Ω koax cable for maximum load requirements
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- UV-resistant

CE

hydrolysis-resistant and microbe-resistant

(following VDMA 24568), Class 4

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Conductor Multi-wire; adapted in single-wire diameter and pitch length to

suit the requirements in Energy Chains®.

Core insulation Special FEP-isolating mixture.

Core stranding Cores stranded in one layer with especially short pitch length.

Core identification Schedule delivery program

Element shield Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Element jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Low-adhesion mixture on the basis of TPE, especially abrasion-Outer jacket resistant and highly flexible, adapted to suit the requirements

in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

According to ISO Class 1. Outer jacket material complies with Clean room CF9.15.07, tested by IPA according to standard 14644-1

no minimum order quantity

CF Koax 1 10 x d

Koax cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

145

Info

The coax elements used in cables of the CF Koax1 series are comparable with a HF75-0.3/1.6 according to MIL-C-17/94-RG179 and thus fit in an RG179 plug!

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Delivery program	Number of cores	External	Copper	Weight
Part No.		diameter	index	[kg/km]
		approx. [mm]	[kg/km]	
CFKoax 1.01	1 coaxial element	4.5	9	25
CFKoax 1.05	5 coaxial elements	10.0	47	135

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Delivery program Part No.	Characteristic wave impedance approx. $[\Omega]$	Number of cores	Colour code
CF Koax 1.01	75	1 coaxial element	black
CF Koax 1.05	75	5 coaxial elements	red. green. blue. white, black

Order example: CFKoax1.01 - in your desired length (0.5 m steps)

CF Koax1 Chainflex® series .01 Number of coaxial elements



Please use www.chainflex.eu/en/CFKOAX1 for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Koax cables and other Chainflex® cables in platform technology. E-Chain®: System E4/4

850 types from stock no cutting costs

Chainflex® cable

Jacket
Shield
Minimum bending
radius, moved
[factor x d]
Temperature Torsion resistant Approvals and standards Temperature moved from/to [°C] v max. [m/s] unsupported v max. [m/s] gliding a max. [m/s²] Oil-resistant Page Fibre optic cables (FOC)* CFLG.2H CE POHS **PUR** -20/ +60 10 12.5 6 20 150 **CFLK** CE OF PUR 12.5 -20/ +70 10 5 20 152 CFLG.2LB **(€** ^(roHS) **TPE** -40/ +60 10 6 20 154 **(€** ♥ CFLG. G **TPE** 15 -40/ +60 10 6 20 156

^{*} CFROBOT5, torsionable fibre optic cables ▶ Page 220

The safest and often cheapest way to transfer data to machines and plant.

Fault-free communication between all systems in machines and plant that is becoming more and more complex all the time should be a matter of course these days.

However, many plant manufacturers or operators have major EMC problems that occur sporadically or even only years later.

These problems are often based on conventional bus cables that either have insufficient or unreliable shielding.

Alongside igus® Chainflex® bus cables that already prevent these problems to a large extent, Chainflex® glass fibre optic cables provide further advantages for even greater data safety.

Fibre optic cables (FOC) do not require a braided shielding that is susceptible to mechanical damage as EMC protection, and are insensitive to EMC on account of their very nature, since industrial conventional interference fields do not have any effect on light signals.

In addition, fibre optic cables can be used independently of the system, since a special bus cable is not required for every bus system, rather one FOC type can usually be used to operate any bus system providing the bus system manufacturer provides respective FOC converters.

The large number of fibre optic cables in industrial data transmission is also much more manageable than the large number of different field or high-speed buses which require a separate cable for each bus.

Thus the following fibre types can be used for industrial data communication, completely independently of the type of field bus used. The fibre type and number depends only on which converters are used and which fibre type the respective manufacturer prescribes. The fibres are defined on the basis of diameter and result in a clear and limited choice.

Important fibre types:

Multi-mode fibres

 $50/125 \, \mu m$

62,5/125 µm

The ideal fibre for large data volumes and longer transmission lengths in the field of automation. On account of the very low output attenuation (0.8-3 db/km per fibre and light wave length) of these fibre types, transmission lengths of several hundred metres can be realised quite easily.

POF (Plastic fibres)

980/1000 µm

The ideal and low-cost fibre for short transmission paths. On account of the high output attenuation of the fibre type of 160-230 dB/km, lengths over 15 mm must be avoided in permanent-motion energy chains®.

PCF (Polymer Cladded Fibre)

devices having to be replaced.

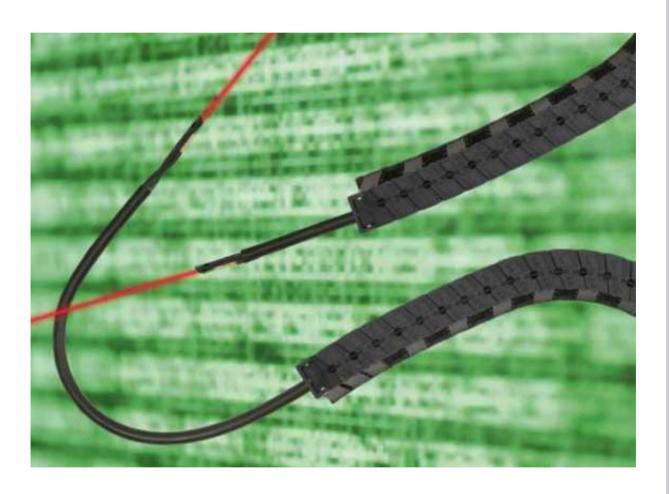
200/230 µm

The ideal compromise for POF fibre. This plastic-coated quartz glass fibre is a viable alternative for many terminal devices that have been designed for POF. This means greater transmission lengths (100 m and more) are possible without the original POF terminal

... no minimum order quantity

Chainflex® FOC offer the operator the following advantages:

1. Greater data security thanks to


- FOC-typical better transmission characteristics
- Greater possible transmission lengths of several 100 m
- Greater possible data volumes thanks to lower attenuation values
- Maximum EMC protection for the data transmitted
- Future-proof installation (no cable replacement with new bus systems)

2. Greater mechanical protection through

- The FOC designed for permanent mechanical movement
- The igus®-typical highly abrasion-proof and chemical resistant sheathing materials
- The special Chainflex® design concept (tested at 30 million cycles without a significant increase in attenuation)

3. Future-oriented cost reduction through

- Bus-independent bus cable wiring
- Longer service life in E-Chains®
- Extendable without transmission limits

Test data ► Page 38

PUR Fibre optic cable (FOC) Chainflex® CFLG.2H

- for high load requirements
- PUR outer jacket
- metal-free
- oil-resistant
- UV-resistant

Temperature range

moved

Temperature range

v max.

unsupported/gliding

-20 °C to +60 °C, minimum bending radius 12.5 x d

-25 °C to +60 °C, minimum bending radius 7.5 x d

a max.

20 m/s²

10 m/s, 6 m/s

Travel distance

Freely suspended and gliding travel distances up to 100 m,

Class 3

UV-resistant

Silicon-free

Fibre optic cable

High

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Offshore

MUD-resistant following NEK 606

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

 $50/125 \mu m$, $62,5/125 \mu m$, $200/230 \mu m$ fibres in gel-filled

hollow cores.

Core stranding Hollow cores with integrated FOC-fibres stranded with two

strain relief elements.

Core identification

Cores black with white numerals.

Outer jacket

Low-adhesion mixture on the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282

Part 10). Colour: black (similar to RAL 9005)

CE Following 2006/95/EG

Following EU guideline (RoHS) 2002/95/EC. Lead free

Typical application area

- for high load requirements
- maximum EMC protection, with high transmission qualities in terms of glass-specific requirements
- almost unlimited resistance to oil
- indoor and outdoor applications
- only for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, cranes, refrigerating sector

... no minimum order quantity

CFLG.2H 12.5 x d

<u>@</u>
亙
ca
<u>ပ</u>
₩
opti
O
<u>ē</u>
ō
=

+49-2203-96 49-222

ca
<u>.</u> 2
헏
ė
ਕੁ
证

Tel. +49-2203-96 49-0

0	

Delivery program	Number of fibres	Fibre	External	Weight
Part No.		diameter	diameter	[kg/km]
		approx. [µm]	approx. [mm]	
CFLG.2HG.MF.62.5/125	2	62.5 / 125	9.0	85
CFLG.2HG.MF.50/125	2	50 / 125	9.0	85
CFLG.2HS.MF.200/230	2	200 / 230	9.0	85

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Delivery program	Bandwidth	Attenuation	Bandwidth	Attenuation	Colour code
Part No.	with 850 nm	with 850 nm	with 1300 nm	with 1300 nm	
	[MHz x km]	[dB/km]	[MHz x km]	[dB/km]	
CFLG.2HG.MF.62.5/125	160 - 200	3.2	200 - 500	0.9	black with white numbers
CFLG.2HG.MF.50/125	200 - 600	2.5 - 3.5	600 - 1200	0.7 - 1.5	black with white numbers
CFLG.2HG.MF.200/230	20	6.0	-	-	black with white numbers

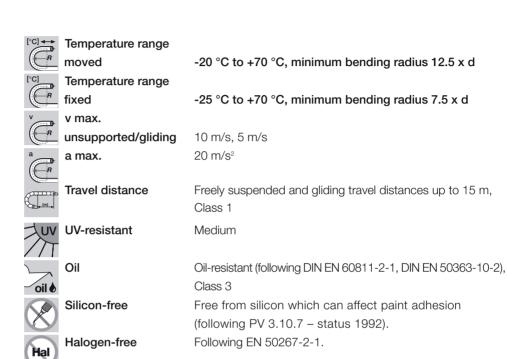
Order example: CFLG.2HG.MF.62,5/125 - in your desired length (0.5 m steps) CFLG.2H Chainflex® series .MF Metal-free .62,5/125 Type of fibres

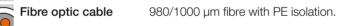
Please use www.chainflex.eu/en/CFLG2HG for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Test data ► Page 38




Metal-free fibre optic cables for fast handling applications. E-Chain®: System E2/000

PUR Fibre optic cable (FOC) Chainflex® CFLK

- POF fibres for high stressing capacity and interference-free transmission
- PUR outer jacket
- oil-resistant

Core stranding POF fibre with stranded high-tensile plastic reinforcement.

Core identification Black core.

Outer jacket Low-adhesion mixture on the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282

Part 10). Colour: violet (similar to RAL 4001)

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Typical application area

- for high load requirements
- maximum EMC protection
- almost unlimited resistance to oil
- preferably indoor applications
- especially for freely suspended and gliding travel distances up to 15 m
- wood/stone processing, packaging industry, supply system, handling, adjusting equipment

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

Rens

CFLK PUR 12.5 x d

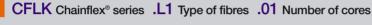
Fibre optic cable

		-	
		г	١
		ζ	١
		^	

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

/											
•	•	•	•	•	•	•	•	•	•	•	۸
١.	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰

153


Delivery programNumber of fibresFibreExternalWeightPart No.diameter
approx. [μm]diameter
approx. [mm][kg/km]CFLK.L1.011980/10006.025

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Delivery program	Bandwidth	Attenuation	Colour
Part No.	with 650 nm	with 650 nm	code
	[MHz x km]	[dB/km]	
CFLK.L1.01	40	200	black

Order example: CFLK.L1.01 – in your desired length (0.5 m steps)

Please use www.chainflex.eu/en/CFLK for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

Woodworkingmachines with E-Chains® and Chainflex® cables

New! TPE Fibre optic cable (FOC) Chainflex® CFLG.2LB

- Gradient glass-fiber cable for heavy-duty use
- TPE outer jacket
- metal-free
- oil-resistant
- low-temperature-flexible up to -40 °C
- UV-resistant

Temperature range -40 °C to +60 °C, minimum bending radius 5 x d

moved

Temperature range -40 °C to +60 °C, minimum bending radius 5 x d

fixed

oil 🜢

v max. 10 m/s, 6 m/s

unsupported/gliding

a max. 20 m/s²

Travel distance Freely suspended and gliding travel distances up to 100 m

and more, Class 3

↓UV UV-resistant High

Oil -resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4.

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 192).

Fibre optic cable 50/125 μ m, 62.5/125 μ m special fixed wire elements with

aramide strain relief.

Core stranding FOC wires stranded with high-tensile aramide dampers with

especially short pitch length.

Core identification Cores blue with white numerals.

Overall shield Extremely bending-resistant aramid braid for torsion protection.

Outer jacket Low-adhesion mixture on the basis of TPE, especially abrasion-

in Energy Chains®. Colour: black (similar to RAL 9005)

resistant and highly flexible, adapted to suit the requirements

CE following 2006/95/EG

RoHs Lead free Following EU guideline (RoHS) 2002/95/EG.

Typical application area

- for maximum load requirements at 5 x d
- Maximum EMC protection, with high transmission qualities in terms of glass-specific requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications
- especially for freely suspended and gliding travel distances up to 100 m and more
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, semiconductor insertion, refrigerating sector

... no minimum order quantity

JFLG.ŽL	
TPE	
5 x d	

)		
5		
ί		

	C	3
	Ć)
•	Ę	5
	2	2
	C)
	9	D
	ì	5
:	_	_
L	1	-

o O	-222
49	49
+49-2203-96 49-0	+49-2203-96 49-222
Tel.	Fax

Delivery program	Number of fibres	Fibre	External	Weight	
Part No.		diameter	diameter	[kg/km]	
		approx. [µm]	approx. [mm]		
CFLG.2LB.62,5/125 ⁽¹⁾	2	62.5/125	8	47	New
CFLG.2LB.50/125	2	50/125	8	47	New

⁽¹⁾ Delivery time upon inquiry.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Delivery program	Bandwidth	Attenuation	Bandwidth	Attenuation	Colour code
Part No.	with 850 nm	with 850 nm	with 1300 nm	with 1300 nm	
	[MHz x km]	[dB/km]	[MHz x km]	[dB/km]	
CFLG.2LB.62,5/125	160 - 200	3.2	200 - 500	0.9	blue with white numbers
CFLG.2LB.50/125	200 - 600	2.5 - 3.5	600 - 1200	0.7 - 1.5	blue with white numbers

Order example: CFLG.2LB.50/125 - in your desired length (0.5 m steps) CFLG.2LB Chainflex® series .50/125 Type of fibres

Please use www.chainflex.eu/en/CFLG2LB for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

TPE Fibre optic cable (FOC) Chainflex® CFLG. G

- gradient glass-fibre cable for heavy-duty use
- TPE outer jacket
- halogen-free
- low-temperature-flexible up to -40 °C
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

a max.

10 m/s, 6 m/s 20 m/s²

Travel distance

Freely suspended and gliding travel distances up to 500 m

-40 °C to +60 °C, minimum bending radius 15 x d

-40 °C to +60 °C, minimum bending radius 8.5 x d

and more, Class 4

UV-resistant

High

Oil Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant (following VDMA 24568), Class 4

oil 🜢

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1.

Fibre optic cable

50/125 µm, 62.5/125 µm fibres in gel-filled hollow cores.

Core stranding

Stranded GRP rods with integrated torsion protection braid in the outer jacket over gel-filled fiber sheath...

Core identification

Schedule delivery program

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: black (similar to RAL 9005)

Following 2006/95/EG

Lead free

Following EU guideline (RoHS) 2002/95/EC.

Typical application area

- for maximum load requirements
- maximum EMC protection, with high transmission qualities in terms of glass-specific requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications
- only for freely suspended and gliding travel distances up to 500 m and more
- outdoor ship to shore, crane applications, conveyer technology

... no minimum order quantity

CFLG. G 15 x d

Fibre optic cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Delivery program	Number of fibres	Fibre	External	Weight
Part No.		diameter	diameter	[kg/km]
		approx. [µm]	approx. [mm]	
CFLG.6G.62.5/125.TC	6	62.5/125	11.5	110
CFLG.12G.62.5/125.TC	12	62.5/125	11.5	110
CFLG.6G.50/125.TC	6	50/125	11.5	110
CFLG.12G.50/125.TC	12	50/125	11.5	110

Other number of fibers upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Delivery program	Bandwidth	Attenuation	Bandwidth	Attenuation	Colour code
Part No.	with 850 nm	with 850 nm	with 1300 nm	with 1300 nm	
	[MHz x km]	[dB/km]	[MHz x km]	[dB/km]	
CFLG.6G.62.5/125.T	160 - 200	3.2	200 - 500	0.9	ecru, yellow, green, red,
					violet, blue
CFLG.12G.62.5/125.T	160 - 200	3.2	200 - 500	0.9	ecru, yellow, green, red,
					violet, blue, lightblue, gray,
					brown, black, orange, pink
CFLG.6G.50/125.T	200 - 600	2.5 - 3.5	600 - 1200	0.7 - 1.5	ecru, yellow, green, red,
					violet, blue
CFLG.12G.50/125.T	200 - 600	2.5 - 3.5	600 - 1200	0.7 - 1.5	ecru, yellow, green, red,
					violet, blue, lightblue, gray, brown,
					black, orange, pink

Order example: CFLG.6G.62,5/125.TC - in your desired length (0.5 m steps) CFLG.G Chainflex® series .6G Number of cores .62,5/125 Type of fibres .TC Special identification

Please use www.chainflex.eu/en/CFLGGT for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

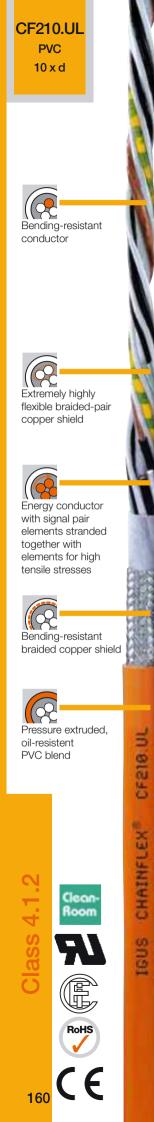
Test data ► Page 42

igus® fibre optic cables with 441 m travel. E-Chain®: System E4/4

850 types from stock no cutting costs ... and order online www.igus.eu/en/CFLGGT (for up to 10 cuts of the same)

S

Chainflex® cable


acket

Shield

Minimum bending
radius, moved
[factor x d]

Temperature
moved
from/to [°C] Torsion resistant Approvals and standards v max. [m/s] unsupported v max. [m/s] gliding a max. [m/s²] Oil-resistant Page Servo cables CF210.UL CE 💖 🔤 🗐 🕦 PVC 10 -5/ +70 10 160 50 CF21.UL C E 💖 🔤 🗐 🙉 us PVC 7,5 -5/ +70 10 5 80 162 CF260* **(€** [№] **PUR** -20/ +80 10 166 10 50 C € 💖 🔤 🕒 🗛 🛂 CF270.UL.D **PUR** 10 -20/ +80 10 50 170 **CF27.D** C E 💖 🔤 🗐 🙉 🕵 **PUR** 7,5 -20/ +80 10 5 80 174

^{*} phase-out model, is replaced by CF210.UL (PVC) and CF270.UL.D (PUR)

New! PVC Servo cable Chainflex® CF210.UL

- for medium load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Temperature range

Temperature range

v max.

unsupported

a max.

Travel distance

Freely suspended travel distances, Class 1

-5 °C to +70 °C, minimum bending radius 10 x d

-20 °C to +70 °C, minimum bending radius 5 x d

UV-resistant

Medium

10 m/s

50 m/s²

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

1), Class 2.

oil 🜢

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Oil

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 192).

Conductor

Core stranding

consisting of bare copper wires (following EN 60228).

Core insulation

Mechanically high-quality, especially low-capacitance

Fine-wire stranded conductor in bending-resistant version

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-

Energy conductor with signal pair elements stranded together with elements for high tensile stresses.

Core identification

Energy conductor: cores black with white numerals, one

core green-yellow.

1. core: U / L1 / C / L+

2. core: V / L2

3. core: W / L3 / D / L-

1 signal pair: cores black with white numerals. 1. control core: 4 2. control core: 5

2 signal pairs: cores black with white numerals. 1. control core: 5 2. control core: 6 3. control core: 7 4. control core: 8

Star-quad: yellow, black, red, white

Element shield

Intermediate jacket

Bending-resistant, tinned braided copper shield. Coverage approx. 55% linear, approx. 80% optical.

Foil taping over the external layer.

... no minimum order quantity

Outer jacket

CF210.UL PVC 10 x d

Servo cable

+49-2203-96 49-222 Fel. +49-2203-96 49-0

161

Overall shield Bending-resistant, tinned braided copper shield.

Coverage approx. 55% linear, approx. 80% optical.

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the require-

ments in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: orange (similar to RAL 2003)

Style 10989 and 2570, 1000 V, 80 °C

Following CEI 20-35

CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EG RoHS

According to ISO Klasse 2. Outer jacket material complies with CF5.10.07, tested by Clean room IPA according to standard 14644-1

Typical application area

- for medium load requirements
- liaht oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended travel distances
- Wood/stone processing, packaging industry, supply system, handling, adjusting equipment

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm²]	approx. [mm]	[kg/km]		
1 control pair shielded					
CF210.UL.15.15.02.01 ⁽¹⁾	(4 G 1.5+(2x1.5)C)C	12.0	149	250	New
CF210.UL.25.15.02.01	(4 G 2.5+(2x1.5)C)C	13.5	203	320	New
CF210.UL.40.15.02.01 ⁽¹⁾	(4 G 4.0+(2x1.5)C)C	15.0	272	412	New
CF210.UL.60.15.02.01 ⁽¹⁾	(4 G 6.0+(2x1.5)C)C	16.5	364	521	New
2 control pairs shielded					
CF210.UL.15.07.02.02 ⁽¹⁾	(4 G 1.5+2x(2x0.75)C)C	13.5	169	290	New
CF210.UL.25.15.02.02 ⁽¹⁾	(4 G 2.5+2x(2x1.5)C)C	15.5	260	408	New
CF210.UL.40.15.02.02 ⁽¹⁾	(4 G 4.0+2x(2x1.5)C)C	17.0	330	506	New
CF210.UL.60.15.02.02 ⁽¹⁾	(4 G 6.0+2x(2x1.5)C)C	18.5	425	633	New

⁽¹⁾ Delivery time upon inquiry.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x = without earth core

Order example: CF210.25.15.02.01.UL - in your desired length (0.5 m steps)

CF210.UL Chainflex® series .25 Code nominal cross section .15 Code nominal cross section signal pairs

.02 Identification pairs .01 Number of pairs

Please use www.chainflex.eu/en/210.UL for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

850 types from stock no cutting costs

PVC Servo cable Chainflex® CF21.UL

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max. unsupported/gliding

10 m/s, 5 m/s

a max.

80 m/s²

Travel distance

Freely suspended and gliding travel distances up to 100 m,

-5 °C to +70 °C, minimum bending radius 7.5 x d

-20 °C to +70 °C, minimum bending radius 4 x d

Class 3

UV-resistant

Medium

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1),

Class 2

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

Conductor

(following PV 3.10.7 - status 1992).

Core insulation

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228). Mechanically high-quality, especially low-capacitance TPE

Core stranding

Energy conductor with signal pair elements stranded around high-tensile center cord.

Core identification

Energy conductor: cores black with white numerals, one core green/yellow.

1. core: U / L1 / C / L+

2. core: V / L2

3. core: W / L3 / D / L-

1 control pair: cores black with white numerals.

1. control pair: 4 2. control pair: 5

2 control pairs: cores black with white numerals.

1. control pair: 5 2. control pair: 6 3. control pair: 7 4. control pair: 8

... no minimum order quantity

Class 5.3.2

CF21.UL **PVC** 7.5 x d

Servo cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Fax

163

Element shield Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Inner jacket

PVC mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Outer jacket

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the requirements

According to ISO Class 2. Outer jacket material complies with CF5.10.07, tested by

in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: green (similar to RAL 6005)

UL/CSA Style 10492 and 2570, 1000 V, 80 °C

Following CEI 20-35

Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean room

IPA according to standard 14644-1

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes

PVC Servo cable Chainflex® CF21.UL

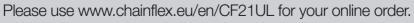
- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

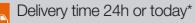
Delivery program	very program Number of cores and External		Copper	Weight			
Part No.	No. conductor nominal		index	[kg/km]			
	cross section [mm²]	approx. [mm]	[kg/km]				
1 control pair shielded							
CF21.07.05.02.01.UL	(4 G 0.75+(2x0.5)C)C	11.0	95	172			
CF21.15.10.02.01.UL	(4 G 1.5+(2x1)C)C	12.5	125	250			
CF21.15.15.02.01.UL ⁽¹⁾	(4 G 1.5+(2x1.5)C)C	13.0	140	280			
CF21.25.10.02.01.UL	(4 G 2.5+(2x1)C)C	13.5	177	300			
CF21.25.15.02.01.UL ⁽¹⁾	(4 G 2.5+(2x1.5)C)C	14.0	182	312			
CF21.40.10.02.01.UL	(4 G 4.0+(2x1)C)C	15.5	232	372			
CF21.40.15.02.01.UL	(4 G 4.0+(2x1.5)C)C	16.0	241	390			
CF21.60.10.02.01.UL	(4 G 6.0+(2x1)C)C	18.0	327	495			
CF21.60.15.02.01.UL ⁽¹⁾	(4 G 6.0+(2x1.5)C)C	18.5	357	605			
CF21.100.10.02.01.UL ⁽¹⁾	(4 G 10.0+(2x1)C)C	22.0	530	786			
CF21.100.15.02.01.UL	(4 G 10.0+(2x1.5)C)C	22.5	540	925			
CF21.160.10.02.01.UL ⁽¹⁾	(4 G 16.0+(2x1)C)C	24.5	700	1050			
CF21.160.15.02.01.UL ⁽¹⁾	(4 G 16.0+(2x1.5)C)C	24.5	716	1165			
CF21.250.15.02.01.UL ⁽¹⁾	(4 G 25.0+(2x1.5)C)C	29.5	1056	1466			
CF21.350.15.02.01.UL ⁽¹⁾	(4 G 35.0+(2x1.5)C)C	33.0	1557	2090			
2 control pairs shielded							
CF21.07.03.02.02.UL	(4 G 0.75+2x(2x0.34)C)C	12.5	113	210			
CF21.10.07.02.02.UL	(4 G 1.0+2x(2x0.75)C)C	13.5	146	266			
CF21.15.07.02.02.UL	(4 G 1.5+2x(2x0.75)C)C	14.5	175	310			
CF21.25.15.02.02.UL	(4 G 2.5+2x(2x1.5)C)C	17.0	265	370			
CF21.40.15.02.02.UL	(4 G 4.0+2x(2x1.5)C)C	18.5	304	435			
CF21.60.15.02.02.UL	(4 G 6.0+2x(2x1.5)C)C	20.5	397	697			
CF21.100.15.02.02.UL	(4 G 10.0+2x(2x1.5)C)C	24.0	560	1025			
CF21.160.15.02.02.UL	(4 G 16.0+2x(2x1.5)C)C	27.0	790	1270			
CF21.250.15.02.02.UL	(4 G 25.0+2x(2x1.5)C)C	31.0	1140	1910			
CF21.350.15.02.02.UL	(4 G 35.0+2x(2x1.5)C)C	34.0	1597	2175			

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor




Order example: CF21.15.10.02.01.UL - in your desired length (0.5 m steps)

CF21.UL Chainflex® series .15 Code nominal cross section .10 Code nominal cross section signalpairs .02 Identification pairs .01 Number of pairs

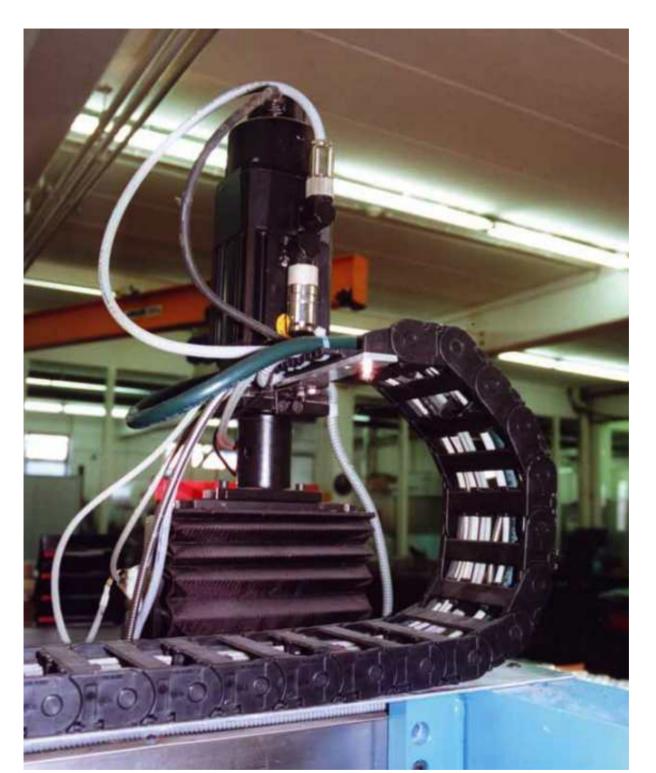
* Delivery time means time until shipping of goods

... no minimum order quantity

CF21.UL PVC 7.5 x d

Servo cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222



Chainflex® CF21.UL: cables for energy supply systems in spinneret production. E-Chain®: Series E2/000

PUR Servo cable Chainflex® CF260

- for medium load requirements
- PUR outer jacket
- shielded
- oil-resistant
- PVC-free/halogen-free

Temperature range

moved

Temperature range

fixed

v max.

unsupported

10 m/s

a max.

50 m/s²

Travel distance

Freely suspended travel distances, Class 1

-20 °C to +80 °C, minimum bending radius 10 x d

-40 °C to +80 °C, minimum bending radius 5 x d

UV-resistant

Medium

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Class 3

Offshore

MUD-resistant following NEK 606

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1.

Conductor

Fine-wire stranded conductor in bending-resistant version consisting of bare copper wires (following EN 60228).

CF268

Core insulation

Mechanically high-quality, especially low-capacitance TPE mixture.

Core stranding

Energy conductor with signal pair elements stranded around high-tensile center cord.

Core identification

Energy conductor: cores black with white numerals,

one core green/yellow.

1. core: U / L1 / C / L+

2. core: V / L2

3. core: W / L3 / D / L-

1 control pair: cores black with white numerals. 1. control pair: 4 2. control pair: 5 2 control pairs: cores black with white numerals. 1. control pair: 5 2. control pair: 6 3. control pair: 7 4. control pair: 8

Star-quad: yellow, black, red, white

... no minimum order quantity

Class 4.1.3

CF260 PUR 10 x d

Servo cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Element shield Bending-resistant, tinned braided copper shield. Coverage approx. 55% linear, approx. 80% optical.

Intermediate sheath Foil taping over the external layer.

Overall shield Bending-resistant, tinned braided copper shield. Coverage approx. 55% linear, approx. 80% optical.

Outer jacket

Low-adhesion mixture on the basis of PUR, adapted to suit the requirements in Energy

Chains® (following DIN VDE 0282 Part 10). Colour: orange (similar to RAL 2003)

Following 2006/95/EG

DESINA According to VDW, DESINA standardisation

Lead free Following EU guideline (RoHS) 2002/95/EC.

Typical application area

- for medium load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended travel distances
- machining units/machine tools, low temperature applications

PUR Servo cable Chainflex® CF260

- for medium load requirements
- PUR outer jacket
- shielded
- oil-resistant
- PVC-free/halogen-free

76
000
~0

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
66,	cross section [mm²]	approx. [mm]	[kg/km]	
control pair shielded				
CF260.15.10.02.01	(4 G 1.5+(2x1.0)C)C	11.0	120	178
CF260.25.10.02.01	(4 G 2.5+(2x1.0)C)C	12.5	160	229
CF260.40.10.02.01	(4 G 4.0+(2x1.0)C)C	13.5	235	309
CF260.60.10.02.01	(4 G 6.0+(2x1.0)C)C	15.0	309	402
CF260.100.10.02.01	(4 G 10.0+(2x1.0)C)C	20.0	530	690
CF260.160.10.02.01	(4 G 16.0+(2x1.0)C)C	21.5	753	905
2 control pairs shielded				
CF260.10.07.02.02	(4 G 1.0+2x(2x0.75)C)C	12.0	148	295
CF260.15.07.02.02	(4 G 1.5+2x(2x0.75)C)C	12.5	155	225
1 star quad shielded				
CF260.25.05.04	(4 G 2.5+(4 G 0.5)C)C	13.0	181	258
CF260.60.05.04	(4 G 6.0+(4 G 0.5)C)C	16.0	344	430
Without control pair				
CF260.15.04	(4 G 1.5)C	8.5	76	113
CF260.25.04	(4 G 2.5)C	10.5	128	155
CF260.40.04	(4 G 4.0)C	12.0	193	231
CF260.60.04	(4 G 6.0)C	14.0	272	347
CF260.100.04	(4 G 10.0)C	17.5	441	548
CF260.160.04	(4 G 16.0)C	20.5	672	801
CF260.250.04	(4 G 25.0)C	26.0	1095	1299
CF260.350.04	(4 G 35.0)C	29.0	1447	1692

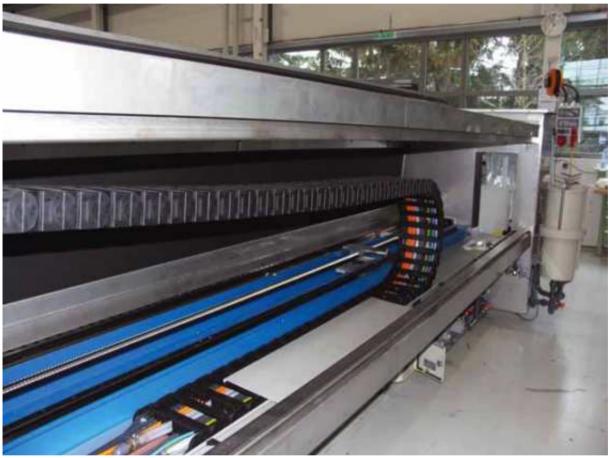
^{*} phase-out model, is replaced by CF210.UL(PVC) and CF270.UL.D (PUR)

CF260 PUR 10 x d

Servo cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

Order example: CF260.15.10.02.01 - in your desired length (0.5 m steps)


CF260 Chainflex® series .15 Code nominal cross section .10 Code nominal cross section signal pairs

.02 Identification pairs .01 Number of pairs

Please use www.chainflex.eu/en/CF260 for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Pre-assembled energy chains with Chainflex® cables for special mechanical engineering applications.

New! PUR Servo cable Chainflex® CF270.UL.D

- for medium load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant

fixed

unsupported

UV-resistant

Offshore

Flame-retardant

oil 🜢

Nominal voltage

- hydrolysis-resistant and microbe-resistant
- PVC-free/halogen-free

Temperature range -20 °C to +80 °C, minimum bending radius 10 x d

Temperature range -40 °C to +80 °C, minimum bending radius 5 x d

v max. 10 m/s

a max. 50 m/s^2

Travel distance Freely suspended travel distances, Class 1

//T

Medium

Testing voltage 4000 V (following DIN VDE 0281-2).

Oil Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

MUD-resistant following NEK 606.

According to IEC 332-1, CEI 20-35, FT1.

600/1000 V (following DIN VDE 0250).

Class 3.

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 – status 192). **Halogen-free**Following EN 50267-2-1.

Conductor Fine-wire stranded conductor in bending-resistant version

consisting of bare copper wires (following EN 60228)

Core insulation

Mechanically high-quality, especially low-capacitance

The state of the s

PE mixture.

Core stranding Energy conductor with signal pair elements stranded together

with elements for high tensile stresses.

... no minimum order quantity

Element shield

Overall shield

UL/CSA

DESINA

CF270.UL.D **PUR** 10 x d

Servo cable

02203-9649-222 rel. 02203-9649-0

171

Core identification Energy conductor: cores black with white numerals, one core green-yellow.

1. core: U / L1 / C / L+

2. core: V / L2

3. core: W / L3 / D / L-

1 signal pair: cores black with white numerals. 1. control core: 4 2. control core: 5 2 signal pairs: cores black with white numerals. 2. control core: 6

1. control core: 5 4. control core: 8 3. control core: 7 Bending-resistant, tinned braided copper shield. Coverage approx. 55% linear, approx. 80% optical.

Intermediate jacket Foil taping over the external layer.

Coverage approx. 55% linear, approx. 80% optical. Outer jacket Low-adhesion mixture on the basis of PUR, adapted to suit the requirements in Energy

Bending-resistant, tinned braided copper shield.

Chains® (following DIN VDE 0282 Part 10).

Colour: orange (similar to RAL 2003) Style 10989 and 21223, 1000 V, 80 °C

According to VDW, DESINA standardisation

CEI Following CEI 20-35

CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EG. RoHS

According to ISO Class 1, material/cable tested by IPA according to ISO standard Clean room 14644-1

Typical application area

- for medium load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications without direct sun radiation
- especially for freely suspended travel distances
- Machining units/machine tools, low temperature applications

- for medium load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant
- PVC-free/halogen-free

Delivery program	Number of cores and	External	Copper	Weight			
Part No.	conductor nominal	diameter	index	[kg/km]			
	cross section [mm ²]	approx. [mm]	[kg/km]				
1 control pair shielded							
CF270.UL.15.15.02.01.D	(4 G 1.5+(2x1.5)C)C	12.0	149	246	New		
CF270.UL.25.15.02.01.D ⁽¹⁾	(4 G 2.5+(2x1.5)C)C	13.5	203	317	New		
CF270.UL.40.15.02.01.D ⁽¹⁾	(4 G 4.0+(2x1.5)C)C	15.0	272	408	New		
CF270.UL.60.15.02.01.D ⁽¹⁾	(4 G 6.0+(2x1.5)C)C	16.5	364	521	New		
CF270.UL.100.15.02.01.D ⁽¹⁾	(4 G 10.0+(2x1.5)C)C	20.5	582	841	New		
CF270.UL.160.15.02.01.D ⁽¹⁾	(4 G 16.0+(2x1.5)C)C	24.0	855	1225	New		
2 control pairs shielded							
CF270.UL.10.07.02.02.D ⁽¹⁾	(4 G 1.0+2x(2x0.75)C)C	13.0	143	251	New		
CF270.UL.15.07.02.02.D(1)	(4 G 1.5+2x(2x0.75)C)C	13.5	169	290	New		
CF270.UL.25.15.02.02.D ⁽¹⁾	(4 G 2.5+2x(2x1.5)C)C	15.5	260	408	New		
CF270.UL.40.15.02.02.D ⁽¹⁾	(4 G 4.0+2x(2x1.5)C)C	17.0	330	506	New		
CF270.UL.60.15.02.02.D ⁽¹⁾	(4 G 6.0+2x(2x1.5)C)C	18.5	425	633	New		
CF270.UL.100.15.02.02.D(1	(4 G 10.0+2x(2x1.5)C)C	22.0	632	940	New		
CF270.UL.160.15.02.02.D(1	(4 G 16.0+2x(2x1.5)C)C	26.0	901	1315	New		
CF270.UL.250.15.02.02.D ⁽¹⁾	(4 G 25.0+2x(2x1.5)C)C	28.0	1365	1847	New		
CF270.UL.350.15.02.02.D(1	(4 G 35.0+2x(2x1.5)C)C	35.0	1804	2516	New		
Without signal pair							
CF270.UL.15.04.D(1)	(4 G 1.5)C	9.0	82	147	New		
CF270.UL.25.04.D ⁽¹⁾	(4 G 2.5)C	11.0	141	224	New		
CF270.UL.40.04.D(1)	(4 G 4.0)C	12.5	211	309	New		
CF270.UL.60.04.D(1)	(4 G 6.0)C	14.5	306	434	New		
CF270.UL.100.04.D ⁽¹⁾	(4 G 10.0)C	18.0	496	698	New		
CF270.UL.160.04.D ⁽¹⁾	(4 G 16.0)c	21.5	782	1052	New		
CF270.UL.250.04.D ⁽¹⁾	(4 G 25.0)C	25.5	1197	1572	New		
CF270.UL.350.04.D ⁽¹⁾	(4 G 35.0)C	33.0	1695	2312	New		

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x = without earth core

CF270.UL.D **PUR** 10 x d

Order example: CF270.UL.25.15.02.01.D - in your desired length (0.5 m steps) CF270.UL.D Chainflex® series .25 Code nominal cross section .15 Code nominal cross section signal pairs .02 Identification pairs .01 Number of pairs

Please use www.chainflex.eu/en/CF270ULD for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

PUR Servo cable Chainflex® CF27.D

- for maximum load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant
- PVC-free/halogen-free

Temperature range

moved

v max.

-20 °C to +80 °C, minimum bending radius 7.5 x d

R 4

Temperature range fixed

-40 °C to +80 °C, minimum bending radius 4 x d

V R

unsupported/gliding

10 m/s, 5 m/s

a R

a max.

80 m/s²

[m]

Travel distance

Freely suspended and gliding travel distances up to 100 m,

Class 3

VV

UV-resistant Medium

4u

Nominal voltage 600/1000 V (following DIN VDE 0250).

A

Testing voltage 4000 V (following DIN VDE 0281-2).

oil &

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-10-2),

Class 3

Offshore

MUD-resistant following NEK 606

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 1992).

Following EN 50267-2-1.

Conductor

Halogen-free

Core insulation

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228). Mechanically high-quality, especially low-capacitance TPE

mixture.

Core stranding

Energy conductor with signal pair elements stranded around

high-tensile center cord.

... no minimum order quantity

CF27.D PUR $7.5 \times d$

Servo cable

+49-2203-96 49-222

Fel. +49-2203-96 49-0

Core identification

Energy conductor: cores black with white numerals, one core green/yellow.

2. core: V / L2 1. core: U / L1 / C / L+

3. core: W / L3 / D / L-

1 control pair: cores black with white numerals. 1. control pair: 4 2. control pair: 5 2 control pairs: cores black with white numerals. 1. control pair: 5 2. control pair: 6 3. control pair: 7 4. control pair: 8

Star-quad: yellow, black, red, white

Element shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Inner jacket PUR mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Outer jacket Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit

the requirements in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: orange (similar to RAL 2003)

UL/CSA Style 10492 and 20234, 1000 V, 80 °C

CEI Following CEI 20-35

Following 2006/95/EG

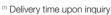
DESINA According to VDW, DESINA standardisation

Lead free Following EU guideline (RoHS) 2002/95/EC.

14644-1

Clean room According to ISO Class 1, material/cable tested by IPA according to ISO standard

Typical application area


- for maximum load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

PUR Servo cable Chainflex® CF27.D

- for maximum load requirements
- PUR outer jacket
- shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant
- PVC-free/halogen-free

Delivery program	Number of cores and	External	Copper	Weight			
Part No.	conductor nominal	diameter	index	[kg/km]			
	cross section [mm²]	approx. [mm]	[kg/km]				
1 control pair shielded							
CF27.07.05.02.01.D	(4 G 0.75+(2x0.5)C)C	11.5	95	171			
CF27.15.10.02.01.D	(4 G 1.5+(2x1)C)C	12.5	125	220			
CF27.15.15.02.01.D(1)	(4 G 1.5+(2x1.5)C)C	12.5	140	260			
CF27.25.10.02.01.D	(4 G 2.5+(2x1)C)C	13.5	177	286			
CF27.25.15.02.01.D ⁽¹⁾	(4 G 2.5+(2x1.5)C)C	14.0	182	300			
CF27.40.10.02.01.D	(4 G 4.0+(2x1)C)C	16.0	232	356			
CF27.40.15.02.01.D ⁽¹⁾	(4 G 4.0+(2x1.5)C)C	16.0	241	375			
CF27.60.10.02.01.D	(4 G 6.0+(2x1)C)C	17.5	327	481			
CF27.60.15.02.01.D(1)	(4 G 6.0+(2x1.5)C)C	17.5	357	580			
CF27.100.10.02.01.D	(4 G 10.0+(2x1)C)C	20.5	530	740			
CF27.100.15.02.01.D ⁽¹⁾	(4 G 10.0+(2x1.5)C)C	21.5	540	900			
CF27.160.10.02.01.D	(4 G 16.0+(2x1)C)C	23.0	700	1023			
CF27.160.15.02.01.D ⁽¹⁾	(4 G 16.0+(2x1.5)C)C	24.5	716	1150			
CF27.250.15.02.01.D	(4 G 25.0+(2x1.5)C)C	28.5	1056	1435			
CF27.350.15.02.01.D	(4 G 35.0+(2x1.5)C)C	32.5	1553	2079			
2 control pairs shielded							
CF27.07.03.02.02.D(1)	(4 G 0.75+2x(2x0.34)C)C	12.5	102	195			
CF27.10.07.02.02.D	(4 G 1.0+2x(2x0.75)C)C	13.5	143	251			
CF27.15.07.02.02.D	(4 G 1.5+2x(2x0.75)C)C	14.5	175	295			
CF27.25.15.02.02.D	(4 G 2.5+2x(2x1.5)C)C	16.5	265	349			
CF27.40.15.02.02.D	(4 G 4.0+2x(2x1.5)C)C	18.0	303	405			
CF27.60.15.02.02.D	(4 G 6.0+2x(2x1.5)C)C	19.5	397	643			
CF27.100.15.02.02.D	(4 G 10.0+2x(2x1.5)C)C	23.5	560	1000			
CF27.160.15.02.02.D	(4 G 16.0+2x(2x1.5)C)C	26.0	790	1250			
CF27.250.15.02.02.D	(4 G 25.0+2x(2x1.5)C)C	30.0	1140	1890			
CF27.350.15.02.02.D ⁽¹⁾	(4 G 35.0+2x(2x1.5)C)C	33.5	1597	2150			
1 star quad shielded							
CF27.15.05.04.D(1)	(4 G 1.5+(4x0.5)C)C	14.5	142	310			
CF27.25.05.04.D(1)	(4 G 2.5+(4x0.5)C)C	15.0	199	325			
CF27.40.05.04.D(1)	(4 G 4.0+(4x0.5)C)C	17.0	256	480			
CF27.60.05.04.D(1)	(4 G 6.0+(4x0.5)C)C	18.0	371	550			

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

CF27.D PUR 7.5 x d

Servo cable

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

Delivery program	Number of cores and	External	Copper	Weight		
Part No.	conductor nominal	diameter	index	[kg/km]		
	cross section [mm ²]	approx. [mm]	[kg/km]			
Without control pair						
CF27.07.04.D ⁽¹⁾	(4 G 0.75)C	9.5	52	113		
CF27.10.04.D ⁽¹⁾	(4 G 1.0)C	10.0	62	126		
CF27.15.04.D	(4 G 1.5)C	10.5	86	160		
CF27.25.04.D	(4 G 2.5)C	12.0	140	260		
CF27.500.04.D	(4 G 50.0)C	37.5	2230	3200		

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF27.15.10.02.01.D - in your desired length (0.5 m steps)

CF27 Chainflex® series .15 Code nominal cross section .10 Code nominal cross section signalpairs

.02 Identification pairs .01 Number of pairs

Please use www.chainflex.eu/en/CF27D for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Modular design, easy to retrofit: igus® E4 energy supply system and Chainflex® cables.

Chainflex® cable

Jacket
Shield
Minimum bending radius, moved
[factor x d]
Temperature moved from/to [°C] Torsion resistant Approvals and standards v max. [m/s] gliding a max. [m/s²] Oil-resistant unsupported v max. [m/s] Page Power cables **CF30** C E 💖 🔤 🕒 🙉 🌠 **PVC** 7.5 -5/+701 10 5 80 180 **CF31 PVC** 7.5 -5/ +70 (E 🤭 🔤 🕞 🙉 10 5 80 182 CF34.UL.D C 6 🤭 🔤 🕞 🙉 🌠 **TPE** 7.5 -35/+901 10 6 80 184 CF35.UL **TPE** 1 7.5 -35/ +90 (E 🤭 🔤 🕞 🙉 us 10 6 80 186 **CF37.D** C € 💞 🔤 🌠 **TPE** 7.5 -35/+901 10 6 80 188 **CF38 TPE** 7.5 -35/+90**(€** (%) **(==** 10 6 80 190 CF300.UL.D C 6 🤭 🔤 🕞 🙉 🌠 TPE 7.5 -35/ +90 10 6 100 192 **CFPE TPE** 7.5 -35/ +90 (E 💖 🔤 🕞 🙉 us 10 6 100 194 CF310.UL (E 💖 🔤 🕀 🖳 **TPE** 1 7.5 -35/+9010 6 100 196 CF330.D **TPE** 7.5 -35/+90C € (RoHS) (See) (M.) 10 6 100 198 CF340 C € (%) **(**=== **TPE** 7.5 -35/ +9010 6 100 200 **CF BRAID** C € 💖 🔙 🥞 🌠 **TPE** 7.5 -35/ +70 10 6 80 202 CF BRAID.C C E 🤭 🟣 🗐 TPE 1 7.5 -35/+701 10 6 80 202 CFCRANE igupren ✓ CE POHS 1 10 10 -20/ +806 50 204 **Pneumatic hoses**

RoHS

RoHS

-25/ +80

-25/+60

CFAIR

CF Clean AIR PE

PU

10

10

10

10

1

1

6

6

206

208

50

50

PVC Power cable Chainflex® CF30

- for high load requirements
- PVC outer jacket
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed v max.

unsupported/gliding

a max.

10 m/s, 5 m/s

80 m/s²

Travel distance

Freely suspended and gliding travel distances up to 100 m,

-5 °C to +70 °C, minimum bending radius 7.5 x d

-20 °C to +70 °C, minimum bending radius 4 x d

Class 3

UV-resistant

Medium

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1),

Class 2

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Conductor

< 10 mm²: Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires

(following EN 60228).

≥ 10 mm²: conductor cable consisting of pre-leads

(following EN 60228).

Core insulation

Mechanically high-quality, especially low-capacitance TPE

mixture.

Core stranding

Cores stranded in short pitch lengths over a centre for high tensile stresses.

Core identification

Energy conductor: cores black with white numerals, one core green/yellow.

2. core: V / L2 1. core: U / L1 / C / L+ 3. core: W / L3 / D / L-4. core: 4 / N

Outer jacket

Low-adhesion, oil-resistant mixture on the basis of PVC, adapted to suit the requirements in Energy Chains® (following DIN

VDE 0282 Part 10).

Colour: black (similar to RAL 9005)

UL/CSA

Style 10492 and 2570, 1000 V, 80 °C

... no minimum order quantity

CF30 PVC 7.5 x d

Power cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

181

CEI Following CEI 20-35

CE Following 2006/95/EG

DESINA According to VDW, DESINA standardisation

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean room According to ISO Class 2. Outer jacket material complies with CF5.10.07, tested by

IPA according to standard 14644-1

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF30.15.04	4 G 1.5	8.5	55	101
CF30.25.04	4 G 2.5	10.5	95	164
CF30.25.05 ⁽¹⁾	5 G 2.5	11.5	119	196
CF30.40.04	4 G 4.0	12.0	152	237
CF30.40.05	5 G 4.0	13.0	191	286
CF30.60.04	4 G 6.0	14.0	235	344
CF30.60.05	5 G 6.0	15.0	293	417
CF30.100.04	4 G 10.0	17.5	391	555
CF30.100.05	5 G 10.0	19.5	489	698
CF30.160.04	4 G 16.0	20.5	610	834
CF30.160.05	5 G 16.0	23.5	763	1062
CF30.250.04	4 G 25.0	25.5	944	1345
CF30.350.04	4 G 35.0	28.5	1339	1731
CF30.500.04	4 G 50.0	34.0	1898	2596

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF30.15.04 – in your desired length (0.5 m steps) CF30 Chainflex® series .15 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF30 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

PVC Power cable Chainflex® CF31

- for high load requirements
- PVC outer jacket
- shielded
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

a max.

-5 °C to +70 °C, minimum bending radius 7.5 x d

-20 °C to +70 °C, minimum bending radius 4 x d

10 m/s, 5 m/s 80 m/s²

Freely suspended and gliding travel distances up to 100 m,

Class 3

UV-resistant

Travel distance

Medium

Nominal voltage 600/1000 V (following DIN VDE 0250).

Testing voltage

Oil

4000 V (following DIN VDE 0281-2).

Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363-4-1), Class 2

Flame-retardant According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Conductor

< 10 mm²: Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

≥ 10 mm²: conductor cable consisting of pre-leads (following EN 60228).

Core insulation Core stranding

Mechanically high-quality, especially low-capacitance TPE

tensile stresses.

Cores stranded in short pitch lengths over a centre for high

Core identification

Energy conductor: cores black with white numerals, one core green/yellow.

1. core: U / L1 / C / L+ 2. core: V / L2 3. core: W / L3 / D / L-4. core: 4 / N

Inner jacket

PVC mixture adapted to suit the requirements in Energy Chains®.

Overall shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical. Outer jacket Low-adhesion, oil-resistant mixture on the basis of PVC, adap-

ted to suit the requirements in Energy Chains® (following DIN VDE 0282 Part 10). Colour: black (similar to RAL 9005)

Style 10492 and 2570, 1000 V, 80 °C

.. no minimum order quantity

CF31PVC
7.5 x d

Power cable

Tel. +49-2203-9649-0 Fax +49-2203-9649-222

CEI Following CEI 20-35

CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean room According to ISO Class 2. Outer jacket material complies with CF5.10.07, tested by IPA according to standard 14644-1

Typical application area

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF31.15.04	(4 G 1.5)C	10.5	82	168
CF31.25.04	(4 G 2.5)C	12.5	128	236
CF31.25.05	(5 G 2.5)C	13.5	156	277
CF31.40.04	(4 G 4.0)C	14.0	192	320
CF31.40.05	(5 G 4.0)C	15.0	246	390
CF31.60.04	(4 G 6.0)C	16.0	297	470
CF31.60.05	(5 G 6.0)C	18.5	358	565
CF31.100.04	(4 G 10.0)C	20.5	484	754
CF31.100.05	(5 G 10.0)C	22.0	598	903
CF31.160.04	(4 G 16.0)C	23.0	737	1046
CF31.250.04	(4 G 25.0)C	28.5	1081	1605
CF31.350.04	(4 G 35.0)C	32.0	1493	2088
CF31.500.04	(4 G 50.0)C	37.5	2081	3011
CF31.700.04 ⁽⁵⁾	(4 G 70.0)C	47.0	2961	4650

 $^{^{\}circ}$ Cable with PVC core insulation, UL-Style 10579 and 2570 , 600 V, 80 $^{\circ}\text{C}$

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

)

Order example: CF31.25.04 – in your desired length (0.5 m steps)

CF31 Chainflex® series .25 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF31 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

TPE Power cable Chainflex® CF34.UL.D

- for maximum load requirements
- TPE outer jacket
- oil- and bio-oil-resistant
- flame-retardant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed v max.

unsupported/gliding

-40 °C to +90 °C, minimum bending radius 4 x d

10 m/s, 6 m/s

80 m/s²

a max.

Travel distance

and more. Class 4

UV-resistant

High

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

Freely suspended and gliding travel distances up to 400 m

-35 °C to +90 °C, minimum bending radius 7.5 x d

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Conductor < 10 mm²: Fine-wire stranded conductor in especially

bending-resistant version consisting of bare copper wires (following EN 60228).

≥ 10 mm²: conductor cable consisting of pre-leads (following EN 60228).

Core insulation

Mechanically high-quality, especially low-capacitance TPE mixture.

Core stranding

Cores stranded in short pitch lengths over a centre for high tensile stresses.

Core identification

Energy conductor: cores black with white numerals, one

core green/yellow.

2. core: V / L2 1. core: U / L1 / C / L+ 3. core: W / L3 / D / L-4. core: 4 / N

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: black (similar to RAL 9005)

UL/CSA

Style 10492 and 21184, 1000 V, 80 °C

Following CEI 20-35

no minimum order quantity

CF34.UL.D TPE 7.5 x d

Power cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

185

CE Following 2006/95/EG

DESINA According to VDW, DESINA standardisation

RoHS

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean-Room Clean room According to ISO Class 1, material/cable tested by IPA according to ISO standard

14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF34.UL.15.04.D	4 G 1.5	8.5	55	105
CF34.UL.25.04.D	4 G 2.5	10.0	91	156
CF34.UL.40.04.D	4 G 4.0	12.0	152	234
CF34.UL.60.04.D	4 G 6.0	14.0	235	341
CF34.UL.60.05.D	5 G 6.0	15.0	283	414
CF34.UL.100.04.D	4 G 10.0	17.0	391	531
CF34.UL.100.05.D	5 G 10.0	18.5	489	655
CF34.UL.160.04.D	4 G 16.0	19.5	610	788
CF34.UL.160.05.D	5 G 16.0	23.5	763	1072
CF34.UL.250.04.D	4 G 25.0	24.5	944	1245
CF34.UL.60.04.O.PE.D	4 x 6	14.0	235	341
CF34.UL.100.04.O.PE.D	4 x 10	17.0	391	531
CF34.UL.160.04.O.PE.D	4 x 16	19.5	610	788
CF34.UL.500.03.O.PE.D	3 x 50	30.0	1423	1947

Other types available on request.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF34.UL.160.04.D – in your desired length (0.5 m steps) CF34.UL Chainflex® series .160 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF34 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

TPE Power cable Chainflex® CF35.UL

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- flame-retardant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

a max.

-35 °C to +90 °C, minimum bending radius 7.5 x d

-40 °C to +90 °C, minimum bending radius 4 x d

10 m/s, 6 m/s

80 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant High

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

Conductor

4000 V (following DIN VDE 0281-2).

Oil oil 🖢

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568).

Flame-retardant According to IEC 332-1, CEI 20-35, FT1.

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

< 10 mm²: Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires

(following EN 60228).

≥ 10 mm²: conductor cable consisting of pre-leads (following EN 60228).

Core insulation Mechanically high-quality, especially low-capacitance TPE

mixture.

Core stranding

Core identification

Inner jacket

Outer jacket

Cores stranded in short pitch lengths over a centre for high

tensile stresses.

Energy conductor: cores black with white numerals,

one core green/yellow.

1. core: U / L1 / C / L+

2. core: V / L2

3. core: W / L3 / D / L-

4. core: 4 / N

Overall shield

Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the require-

TPE mixture adapted to suit the requirements in Energy Chains®.

ments in Energy Chains®. Colour: black (similar to RAL 9005)

UL/CSA

Style 10492 and 21184, 1000 V, 80 °C

.. no minimum order quantity

CF35.UL $7.5 \times d$

Power cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

187

CEI Following CEI 20-35

Following 2006/95/EG

Following EU guideline (RoHS) 2002/95/EC. Lead free

Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF35.UL.05.04	(4 G 0.5)C	8.0	39	81
CF35.UL.07.04	(4 G 0.75)C	8.5	52	99
CF35.UL.15.04	(4 G 1.5)C	9.5	82	146
CF35.UL.25.04	(4 G 2.5)C	11.5	123	205
CF35.UL.40.04	(4 G 4.0)C	14.0	201	321
CF35.UL.60.04	(4 G 6.0)C	15.5	291	428
CF35.UL.100.04	(4 G 10.0)C	19.5	449	672
CF35.UL.160.04	(4 G 16.0)C	22.0	696	965
CF35.UL.250.04	(4 G 25.0)C	27.0	1082	1489
CF35.UL.60.03.O.PE ⁽¹⁾	(3 x 6.0)C	14.5	228	363
CF35.UL.100.03.O.PE ⁽¹⁾	(3 x 10.0)C	17.0	315	522
CF35.UL.160.03.O.PE	(3 x 16.0)C	20.0	536	772
CF35.UL.250.03.O.PE ⁽¹⁾	(3 x 25.0)C	24.5	852	1184
CF35.UL.350.03.O.PE	(3 x 35.0)C	28.5	1142	1603
CF35.UL.500.03.O.PE	(3 x 50.0)C	32.0	1593	2216

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF35.UL.15.04 – in your desired length (0.5 m steps)

CF35.UL Chainflex® series .15 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF35 for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

TPE power cable Chainflex® CF37.D

- for maximum load requirements
- TPE outer jacket
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

-35 °C to +90 °C, minimum bending radius 7.5 x d

Temperature range fixed

-40 °C to +90 °C, minimum bending radius 4 x d

v max. unsupported/gliding

10 m/s, 6 m/s

a max. 80 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant ⊢

High

Nominal voltage 600/1000 V (following DIN VDE 0250).

Testing voltage 4000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1.

Conductor

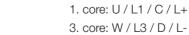
< 10 mm²: stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

≥ 10 mm²: conductor cable consisting of pre-leads (following

EN 60228).

Core insulation

Mechanically high-quality, especially low-capacitance TPE


Core stranding

Cores stranded in short pitch lengths over a centre for high

Core identification

Energy conductor: cores black with white numerals, one core green-yellow.

2. core: V / L2 4. core: 4 / N

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: black (similar to RAL 9005)

... no minimum order quantity

CF37.D TPE 7.5 x d

Power cable

+49-2203-96 49-22 +49-2203-96 49-222

Tel. +49-2203-96 49-0

CE Following 2006/95/EG

DESINA

DESINA According to VDW, DESINA standardisation

RoHS

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean-Room

Clean room According to ISO Class 1, material/cable tested by IPA according to ISO standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF37.15.04.D	4 G 1.5	8.5	55	105
CF37.25.04.D	4 G 2.5	10.0	91	156
CF37.40.04.D ⁽¹⁾	4 G 4.0	12.0	152	234
CF37.60.04.D	4 G 6.0	14.0	235	341
CF37.60.05.D ⁽¹⁾	5 G 6.0	15.0	283	414
CF37.100.04.D	4 G 10.0	17.0	391	531
CF37.100.05.D ⁽¹⁾	5 G 10.0	18.5	489	655
CF37.160.04.D	4 G 16.0	19.5	610	788
CF37.160.05.D(1)	5 G 16.0	23.5	763	1072
CF37.250.04 .D	4 G 25.0	24.5	944	1245
CF37.60.04.O.PE.D ⁽¹⁾	4 x 6	14.0	235	341
CF37.100.04.O.PE.D ⁽¹⁾	4 x 10	17.0	391	531
CF37.160.04.O.PE.D ⁽¹⁾	4 x 16	19.5	610	788
CF37.500.03.O.PE.D	3 x 50	30.0	1423	1947

⁽¹⁾ Delivery time upon inquiry

Other types available on request.

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

W

Order example: CF37.250.04.D – in your desired length (0.5 m steps) CF37.D Chainflex® series .250 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF37 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

TPE power cable Chainflex® CF38

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed

v max. unsupported/gliding -35 °C to +90 °C, minimum bending radius 7.5 x d

-40 °C to +90 °C, minimum bending radius 4 x d

10 m/s, 6 m/s

a max.

80 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant

High

Nominal voltage 600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

Halogen-free

Silicon-free

Following EN 50267-2-1.

Conductor

< 10 mm²: stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

≥ 10 mm²: conductor cable consisting of pre-leads (following EN 60228).

Core insulation

Mechanically high-quality, especially low-capacitance TPE

Core stranding

Cores stranded in short pitch lengths over a centre for high tensile stresses.

Core identification

Energy conductor: cores black with white numerals, one

core green-yellow.

1. core: U / L1 / C / L+

3. core: W / L3 / D / L-

2. core: V / L2

4. core: 4 / N

Inner jacket

TPE mixture adapted to suit the requirements in Energy Chains®.

Extremely bending-resistant, tinned braided copper shield.

Overall shield

Coverage approx. 70% linear, approx. 90% optical. Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: black (similar to RAL 9005)

... no minimum order quantity

CF38 TPE 7.5 x d

Power cable

Tel. +49-2203-96 49-0 =ax +49-2203-96 49-222

CE Following 2006/95/EG

RoHS

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean-Room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by

IPA according to standard 14644-1

Typical application area

for maximum load requirements

Clean room

- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF38.05.04 ⁽¹⁾	(4 G 0.5)C	8.0	39	81
CF38.07.04 ⁽¹⁾	(4 G 0.75)C	8.5	52	99
CF38.15.04	(4 G 1.5)C	9.5	82	146
CF38.25.04 ⁽¹⁾	(4 G 2.5)C	11.0	123	205
CF38.40.04	(4 G 4.0)C	14.0	201	321
CF38.60.04 ⁽¹⁾	(4 G 6.0)C	15.5	291	428
CF38.100.04	(4 G 10.0)C	19.5	449	672
CF38.160.04	(4 G 16.0)C	22.0	696	965
CF38.250.04	(4 G 25.0)C	27.0	1082	1489
CF38.60.03.O.PE ⁽¹⁾	(3 x 6.0)C	14.5	228	363
CF38.100.03.O.PE ⁽¹⁾	(3 x 10.0)C	17.0	315	522
CF38.160.03.O.PE ⁽¹⁾	(3 x 16.0)C	20.0	536	772
CF38.250.03.O.PE ⁽¹⁾	(3 x 25.0)C	24.5	852	1184
CF38.350.03.O.PE ⁽¹⁾	(3 x 35.0)C	28.5	1142	1603
CF38.500.03.O.PE ⁽¹⁾	(3 x 50.0)C	32.0	1593	2216

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF38.25.04 – in your desired length (0.5 m steps) CF38 Chainflex® series .25 Code nominal cross section .04 Number of cores

Please use www.chainflex.eu/en/CF38 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

TPE Power cable Chainflex® CF300.UL.D

- for maximum load requirements
- TPE outer jacket
- oil- and bio-oil-resistant
- flame-retardant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed v max.

v max. unsupported/gliding -35 °C to +90 °C, minimum bending radius 7.5 x d

-40 °C to +90 °C, minimum bending radius 4 x d

10 m/s, 6 m/s

100 m/s²

a max.

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

) V

UV-resistant

High

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

oil &

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

(P

Conductor Conductor cable consisting of pre-leads (following EN

60228).

Core insulation

Mechanically high-quality TPE mixture.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements

in Energy Chains®.

Colour: black (similar to RAL 9005)

CE

Following 2006/95/EG

.F1

LUCSA Style 10492 and 21184, 1000 V, 80 °C

CEI Following CEI 20-35

RoHS

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean-Room Clean room

According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

... no minimum order quantity

CF300.UL.D **TPE** $7.5 \times d$

Power cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Typical application area

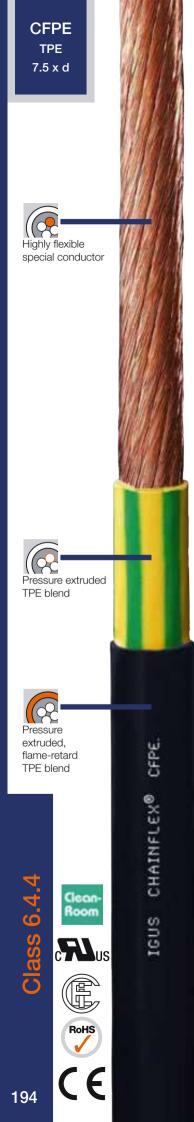
- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF300.UL.60.01.D	1x6.0	7.0	56	77
CF300.UL.100.01.D	1x10.0	8.0	96	119
CF300.UL.160.01.D	1x16.0	9.5	151	183
CF300.UL.250.01.D	1x25.0	11.5	239	281
CF300.UL.350.01.D	1x35.0	12.5	333	377
CF300.UL.500.01.D	1x50.0	14.5	479	525
CF300.UL.700.01.D	1x70.0	16.0	623	676
CF300.UL.950.01.D	1x95.0	19.0	848	927
CF300.UL.1200.01.D	1x120.0	21.5	1059	1145
CF300.UL.1500.01.D	1x150.0	23.0	1318	1411
CF300.UL.1850.01.D	1x185.0	27.0	1890	2014

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF300.UL.950.01.D - in your desired length (0.5 m steps) CF300.UL.D Chainflex® series .950 Code nominal cross section .01 Number of cores

Please use www.chainflex.eu/en/CF300 for your online order.


Delivery time 24h or today*

Delivery time means time until shipping of goods

STS cranes in Antwerp with igus® Energy Chain Systems® for energy and data supplies to centenary and main trolley.

850 types from stock no cutting costs

TPE Power cable Chainflex® CFPE

- for maximum load requirements
- TPE outer jacket
- oil- and bio-oil-resistant
- flame-retardant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed v max.

unsupported/gliding

-35 °C to +90 °C, minimum bending radius 7.5 x d

-40 °C to +90 °C, minimum bending radius 4 x d

10 m/s, 6 m/s

a max. 100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

ŽUV

UV-resistant Hi

High

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage

4000 V (following DIN VDE 0281-2).

oil 6

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 – status 1992).

(P

Conductor

Conductor cable consisting of pre-leads (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Core identification

tification green-yellow

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements in Energy Chains®. Colour: black (similar to RAL 9005)

UL/CSA

Style 10492 and 21184, 1000 V, 80 °C

CEI

Following CEI 20-35

CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room

According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

... no minimum order quantity

CFPE 7.5 x d

Power cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CFPE.15.01	1 G 1.5	5.0	15	35
CFPE.25.01	1 G 2.5	5.5	25	46
CFPE.40.01	1 G 4.0	6.0	38	61
CFPE.60.01	1 G 6.0	7.5	56	81
CFPE.100.01	1 G 10.0	8.0	96	123
CFPE.160.01	1 G 16.0	9.5	151	191
CFPE.250.01	1 G 25.0	11.5	239	291
CFPE.350.01	1 G 35.0	13.0	333	387

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Order example: CFPE.15.01 - in your desired length (0.5 m steps) CFPE Chainflex® series .15 Code nominal cross section .01 Number of cores

Please use www.chainflex.eu/en/CFPE for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Chainflex® CFPE for machining units. E-Chain®: Series E2 medium

850 types from stock no cutting costs

TPE Power cable Chainflex® CF310.UL

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- flame-retardant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

Temperature range

moved

-35 °C to +90 °C, minimum bending radius 7.5 x d

fixed v max.

-40 °C to +90 °C, minimum bending radius 4 x d

unsupported/gliding

10 m/s, 6 m/s

a max. 100 m/s²

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

UV-resistant High

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testing voltage 4000 V (fo

4000 V (following DIN VDE 0281-2).

oil &

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 1992).

Conductor

Conductor cable consisting of pre-leads (following EN 60228).

Core insulation

Mechanically high-quality TPE mixture.

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Outer jacket Low-adhesion mixture on the basis of TPE, espe

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements

in Energy Chains®.
Colour: black (similar to RAL 9005)

c**Fl**us

UL/CSA Style 10492 and 21184, 1000 V, 80 °C

CEI Following CEI 20-35

CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

... no minimum order quantity

CF310.UL TPE 7.5 x d

Power cable

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

197

Clean room

According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF310.UL.40.01	(1x4.0)C	6.5	55	74
CF310.UL.60.01	(1x6.0)C	7.5	75	97
CF310.UL.100.01	(1x10.0)C	8.5	120	144
CF310.UL.160.01	(1x16.0)C	10.0	178	210
CF310.UL.250.01	(1x25.0)C	11.5	272	314
CF310.UL.350.01	(1x35.0)C	13.5	380	423
CF310.UL.500.01	(1x50.0)C	15.0	524	568
CF310.UL.700.01	(1x70.0)C	17.5	689	748
CF310.UL.950.01	(1x95.0)C	20.5	920	997
CF310.UL.1200.01	(1x120.0)C	22.0	1140	1233
CF310.UL.1500.01	(1x150.0)C	24.0	1436	1549
CF310.UL.1850.01	(1x185.0)C	28.0	2020	2147

Order example: CF310.UL.40.01 – in your desired length (0.5 m steps) CF310.UL Chainflex® series .40 Code nominal cross section .01 Number of cores

Please use www.chainflex.eu/en/CF310 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

Chainflex® CF310.UL for outdoor crane systems. E-Chain®: Series E4/00

850 types from stock no cutting costs ...

TPE power cable Chainflex® CF330.D

- for maximum load requirements
- TPE outer jacket
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- UV-resistant
- hydrolysis-resistant and microbe-resistant

· iiy	arorysis-resistan	t and miorobo-resistant
[°C] ←	Temperature range	
R	moved	-35 °C to +90 °C, minimum bending radius 7.5 x d
[°C]	Temperature range	
(CR	fixed	-40 °C to +90 °C, minimum bending radius 4 x d
V	v max.	
R	unsupported/gliding	10 m/s, 6 m/s
a	a max.	100 m/s ²
(L)R		
[m]	Travel distance	Freely suspended and gliding travel distances up to 400 m and more, Class 4
JUV	UV-resistant	High
L	Nominal voltage	600/1000 V (following DIN VDE 0250).
70		
A	Testing voltage	4000 V (following DIN VDE 0281-2).
7 * \	0.1	O''
	Oil	Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant
oil 🖢	0	(following VDMA 24568), Class 4
	Silicon-free	Free from silicon which can affect paint adhesion
		(following PV 3.10.7 – status 1992).
Hal	Halogen-free	Following EN 50267-2-1.
	i laiogen-nee	1 01100011 19 L14 30201-2-1.

Conductor Conductor cable consisting of pre-leads (following EN 60228).

Core insulation Mechanically high-quality TPE mixture.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements
in Energy Chains®.

Colour: black (similar to RAL 9005)

CE Following 2006/95/EG

DESINA According to VDW, DESINA standardisation

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

... no minimum order quantity

CF330.D 7.5 x d

Power cable

+49-2203-96 49-222 Fel. +49-2203-96 49-0

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF330.60.01.D	1x6.0	7.0	56	77
CF330.100.01.D	1x10.0	8.0	96	119
CF330.160.01.D	1x16.0	9.5	151	183
CF330.250.01.D ⁽¹⁾	1x25.0	11.5	239	281
CF330.350.01.D	1x35.0	12.5	333	377
CF330.500.01.D ⁽¹⁾	1x50.0	14.5	479	525
CF330.700.01.D	1x70.0	16.0	623	676
CF330.950.01.D	1x95.0	19.0	848	927
CF330.1200.01.D	1x120.0	21.5	1059	1145
CF330.1500.01.D(1)	1x150.0	23.0	1318	1411
CF330.1850.01.D ⁽¹⁾	1x185.0	27.0	1890	2014

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF330.160.01.D – in your desired length (0.5 m steps) CF330.D Chainflex® series .160 Code nominal cross section .01 Number of cores

Please use www.chainflex.eu/en/CF330 for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

TPE power cable Chainflex® CF340

- for maximum load requirements
- TPE outer jacket
- shielded
- oil- and bio-oil-resistant
- PVC-free/halogen-free
- UV-resistant

Travel distance

UV-resistant

Halogen-free

hydrolysis-resistant and microbe-resistant

a max.	100 m/s²

(m)	and more, Class 4	0 0	·	
-1.07				

Freely suspended and gliding travel distances up to 400 m

/ /		
#u	Nominal voltage	600/1000 V (following DIN VDE 0250).
A	Testing voltage	4000 V (following DIN VDE 0281-2).

High

	Oil	Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant
oil 🖢		(following VDMA 24568), Class 4
	Ciliaan fras	Free from ellipse which can affect point adhesion

Silicon-free	Free from silicon which can affect paint adhesion
Silicon-free	(following PV 3.10.7 - status 1992).

Conductor cable consisting of pre-leads (following EN 60228).

Following EN 50267-2-1.

Core insulation	Mechanically high-quality TPE mixture.
Overall shield	Extremely bending-resistant, tinned braided copper shield.

	Coverage approx. 70% linear, approx. 90% optical.
Outer jacket	Low-adhesion mixture on the basis of TPE, especially abrasion-
Outer jacket	resistant and highly flexible, adapted to suit the requirements
	in Energy Chains®.

Colour: black (similar to RAL 9005)

CE	E	Following 2006/95/EG
RoHS L	ead free	Following EU guideline (RoHS) 2002/95/EC.

	Clean room	According to ISO Class 1. Outer jacket material complies with
Room		CF34.25.04, tested by IPA according to standard 14644-1

... no minimum order quantity

CF340 TPE 7.5 x d

Power cable

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CF340.40.01	(1x4.0)C	6.5	55	74
CF340.60.01 ⁽¹⁾	(1x6.0)C	7.5	75	97
CF340.100.01 ⁽¹⁾	(1x10.0)C	8.5	120	144
CF340.160.01	(1x16.0)C	10.0	178	210
CF340.250.01 ⁽¹⁾	(1x25.0)C	11.5	272	314
CF340.350.01 ⁽¹⁾	(1x35.0)C	13.5	380	423
CF340.500.01	(1x50.0)C	15.0	524	568
CF340.700.01	(1x70.0)C	17.5	689	748
CF340.950.01 ⁽¹⁾	(1x95.0)C	20.5	920	997
CF340.1200.01 ⁽¹⁾	(1x120.0)C	22.0	1140	1233
CF340.1500.01 ⁽¹⁾	(1x150.0)C	24.0	1436	1549
CF340.1850.01	(1x185.0)C	28.0	2020	2147

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CF340.100.01 – in your desired length (0.5 m steps) CF340 Chainflex® series .100 Code nominal cross section .01 Number of cores

Please use www.chainflex.eu/en/CF340 for your online order.

Delivery time 24h or today*

* Delivery time means time until shipping of goods

TPE Power cable Chainflex® CF BRAID

- for maximum load requirements
- TPE outer jacket
- unshielded/shielded
- oil- and bio-oil-resistant
- flame-retardant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

-35 °C to +70 °C, minimum bending radius 7.5 x d

-40 °C to +70 °C, minimum bending radius 4 x d

a R a

a max.

80 m/s²

10 m/s, 6 m/s

[m]

Travel distance

Freely suspended and gliding travel distances up to 400 m

and more, Class 4

ŽŲV ŽĮ

UV-resistant

High

7∪

Nominal voltage

600/1000 V (following DIN VDE 0250).

Testi

Testing voltage

4000 V (following DIN VDE 0281-2).

oil &

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 1992)

Conductor

(following PV 3.10.7 – status 1992). Fine-wire stranded conductor in especially bending-resistant

Core insulation

version consisting of bare copper wires (following EN 60228). Mechanically high-quality TPE mixture (following DIN VDE 0207 Part 4).

Core stranding

Cores braided together using a special technique.

Core identification

Cores black with white numerals, one core green-yellow.

Inner jacket

TPE mixture adapted to suit the requirements in Energy Chains® (for shielded types).

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical (for shielded types)

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements in Energy Chains®.

Colour: black (similar to RAL 9005)

... no minimum order quantity

According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by

CFBRAID $7.5 \times d$

Power cable

+49-2203-96 49-222

Tel. +49-2203-96 49-0

203

Following 2006/95/EG

Following CEI 20-35

Following EU guideline (RoHS) 2002/95/EC. Lead free

IPA according to standard 14644-1

Typical application area

for maximum load requirements

Clean room

- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, quick handling, in- and outdoor cranes, low-temperature applications

What is special about CF BRAID?

Due to their unique type of design and especially in the case of cross-sections ≥ 2.5 mm² and long distances of travel with large numbers of cycles, cables with 7 cores have an increased tendency toward the formation of corkscrews. Due to the special design of the CF BRAID with 8 braided cores, corkscrews can be completely ruled out.

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm²]	approx. [mm]	[kg/km]	
CFBRAID.25.08	8 G 2.5	20.0	192	398
CFBRAID.25.08.C ⁽⁸⁾	(8 G 2.5)C	23.5	320	625

⁽⁸⁾ without Desina

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CFBRAID.25.08 – in your desired length (0.5 m steps) CFBRAID Chainflex® series .25 Code nominal cross section .08 Number of cores

Please use www.chainflex.eu/en/CFBRAID for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

igupren Power cable Chainflex® CF CRANE

- for maximum voltages and outputs
- iguprene outer jacket
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

-25 °C to +80 °C, minimum bending radius 10 x d

-30 °C to +80 °C, minimum bending radius 7.5 x d

10 m/s, 6 m/s

a R

a max.

50 m/s²

(m)

Travel distance

Freely suspended and gliding travel distances up to 500 m

and more, Class 4

VV

UV-resistant

High

40

Nominal voltage

6/10 kV (following DIN VDE 0250), other voltages upon inquiry.

A

Testing voltage

17 kV (following DIN VDE 0250, part 813).

oil 6

Oil

Oil-resistant (following EN 60811-2-1), Class 3

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 1992).

Conductor

Highly flexible cable consisting of tinned copper wires

(following VDE 0295).

Inner and outer semiconducting layer made of conductive rubber. Insulating sheath made of high-quality, heat-resistant

Overall shield

Core insulation

and ozone-proof ethylene propylene rubber (EPR). Extremely bending-resistant, tinned copper shield.

Coverage approx. 80% optical.

Outer jacket Low-adhesion mixture on t

Low-adhesion mixture on the basis of iguprene, especially abrasion-resistant and highly flexible, adapted to suit the requirements in Energy Chains® (following DIN VDE 0207 Part 21).

Colour: red

CE

Following 2006/95/EG

Lead free

Following EU guideline (RoHS) 2002/95/EC.

... no minimum order quantity

CF CRANE iguprene 10 x d

+49-2203-96 49-222 Tel. +49-2203-96 49-0

Power cable

205

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 500 m and more
- outdoor ship to shore, crane applications, conveyer technology

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CFCRANE1x25/16-6/10kV ⁽¹⁾	(1x25/16)C	27.0	468	940
CFCRANE1x35/16-6/10kV ⁽¹⁾	(1x35/16)C	29.0	576	1110
CFCRANE1x50/16-6/10kV ⁽¹⁾	(1x50/16)C	30.0	712	1350
CFCRANE1x70/16-6/10kV ⁽¹⁾	(1x70/16)C	32.0	912	1550
CFCRANE1x95/16-6/10kV ⁽¹⁾	(1x95/16)C	34.0	1145	1820

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Order example: CFCRANE1x25/16-6/10kV - in your desired length (0.5 m steps) CFCRANE Chainflex® series .1 x 25/16 Code nominal cross section -6/10 Nominal voltage

Please use www.chainflex.eu/en/CFCRANE for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

Chainflex® CFCRANE for 500 m and more of travel. E-Chain®: igus® Rol E-Chain®

CFAIR PU 10 x d

Pneumatic hose Chainflex® CFAIR

- for maximum load requirements
- PU hose
- oil-resistant and coolant-resistant
- abrasion-resistant
- outside-toleranced
- halogen-free

Temperature range

moved

v max.

-20 °C to +80 °C, minimum bending radius 10 x d

[°C]

Temperature range

fixed

-40 °C to +85 °C, minimum bending radius 8 x d

unsupported/gliding

10 m/s, 6 m/s

a max.

50 m/s²

Dimensions

Outside-toleranced

Operating pressure

12 bar at 20 °C

-1 bar at 20 °C

Oil

Vacuum

Oil-resistant.

Halogen-free

Following EN 50267-2-1.

Material

Abrasion-resistant on the basis of Polyurethan adapted to suit the requirements in Energy Chains®.

Colour: blue

Lead free

Following EU guideline (RoHS) 2002/95/EC.

CFAIR PU 10 x d

Pneumatic hose

	_
	200
•	3
-	49
	"

Tel. +49-2203-96 49-0

Delivery program	Max. package	Internal	Wall	External	Weight
Part No.	length	diameter	thickness	diameter	
	[km]	approx. [mm]	approx. [mm]	approx. [mm]	[g/m]
CA PU.A.04.0	2.0	2.7	0.65	4	8
CA PU.A.06.0	1.5	4.0	1.00	6	19
CA PU.A.08.0	1.0	5.7	1.15	8	30
CA PU.A.10.0	1.0	7.0	1.50	10	48
CA PU.A.12.0	0.5	8.0	2.00	12	76
CA PU.A.16.0	0.1	11.0	2.50	16	127

Order example: CA PU.A.04.0 - in your desired length (0.5 m steps)

CA PU Chainflex® series .A Code material .04 Code Ø .0 Special identification

Please use www.chainflex.eu/en/CAPU for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

igus® Chainflex® CFAIR pneumatic hoses were tested over several million bending cycles in E-Chains®. Their outstanding features include flexibility, high abrasion resistance and very good resistance to oil and coolants.

CHAINFLEX CLEAN AIR

Pneumatic hose Chainflex® CF Clean AIR

- for maximum load requirements
- PE hose
- oil-resistant and coolant-resistant
- highly abrasion-resistant
- outside-toleranced
- halogen-free

Temperature range

moved

-25 °C to +60 °C, minimum bending radius 10 x d

Temperature range fixed

-30 °C to +65 °C, minimum bending radius 8 x d

v max.

unsupported/gliding

10 m/s, 6 m/s

a max.

50 m/s²

Dimensions

Outside-toleranced

Operating pressure

10 bar at 20 °C

Vacuum

-0.95 bar at 20 °C

Oil

Oil-resistant.

Halogen-free

Following EN 50267-2-1.

Material

Highly abrasion-resistant on the basis of Polyethylen adapted to suit the requirements in Energy Chains®. Colour: white

Lead free

Following EU guideline (RoHS) 2002/95/EG.

Clean room

According to ISO Class 1, material/cable tested by IPA according to ISO standard 14644-1

Typical application area

- for especially high abrasion resistance
- clean room, semi-conductor industry, handling

igus® material abrasion test

... no minimum order quantity eplan download, configurator, PDF catalogues, lifetime ...

Clean Room

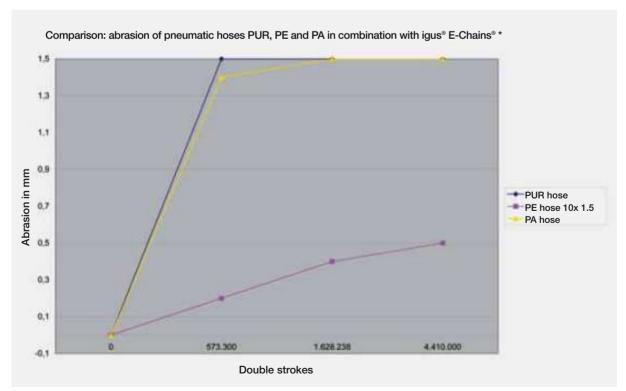
CF Clean All
PE
10 x d

Pneumatic hose

	S
Ş	?
49-0	49-22
٥	٧
אַ	2
Š	Š
Ņ	Š
+49-2203-96	±49-2203-96
<u>.</u>	Ε'n

96	96
9	.03-
22	22
49-	49-
4	4
<u>.</u>	ax

Delivery program	Max. package	Internal	Wall	External	Weight
Part No.	length	diameter	thickness	diameter	
	[km]	approx. [mm]	approx. [mm]	approx. [mm]	[g/m]
CA PE.A.04.0	2.0	2.7	0.65	4	6
CA PE.A.06.0	1.5	4.0	1.00	6	15
CA PE.A.08.0	1.0	5.7	1.15	8	21
CA PE.A.10.0	1.0	7.0	1.50	10	38
CA PE.A.12.0	0.5	8.0	2.00	12	54
CA PE.A.16.0	0.1	11.0	2.50	16	90


Order example: CA PE.A.04.0 - in your desired length (0.5 m steps)

CA PE Chainflex® series .A Code material .04 Code Ø .0 Special identification

Please use www.chainflex.eu/en/CAPE for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

* igus® E-Chain® with opening link 450.30

850 types from stock no cutting costs ... and order online > www.igus.eu/en/CAPE (for up to 10 cuts of the same

Twistable cables

Chainflex® cable

Jacket
Shield
Minimum bending
radius, moved
[factor x d]
Temperature
moved
from/to FCI Torsion resistant Approvals and standards Temperature moved from/to [°C] v max. [m/s] unsupported v max. [m/s] gliding a max. [m/s²] Oil-resistant Page Twistable cables **CFROBOT9** (E 💛 🔤 **PUR** 10,0 -25/ +80 10 10 214 **CFROBOT8 PUR** 10,0 -20/ +70 (E 🙌 🚞 10 10 216 **CFROBOT6** (E 💞 🔤 **PUR** 10 10,0 -25/ +80 10 218 **CFROBOT7** PUR 10,0 -25/ +80 (E (%) 1 10 10 218

(E 💛 🚞

-35/ +100 (€ 💖 🔤 🕒 🗛 us

1

10

10

10

10

220

222

CFROBOT5

CFROBOT

TPE

TPE

12,5

10,0

-20/ +60

Chainflex® cables for robots

Ever more complex sequences of movements in industrial applications demand twistable and/or three-dimensional flexible cables with a long service life similar to the classic Chainflex® cables for use in linear E-ChainSystems®.

Wires, stranded, shields and sheathing materials must compensate both major changes in bending load and changes in diameter due to torsional movements. For this purpose, different "soft" structural elements e.g. rayon fibres, PTFE elements or filling elements that absorb torsion forces are used in Chainflex® ROBOT cables.

Special demands are made on the braided shielding in torsion cables. Torsion-optimised shield structures are chosen that can carry out the necessary compensatory movements thanks to special PTFE gliding films.

With twistable bus cables in particular, the transmission characteristics such as attenuation, cable capacity and signal quality must remain within very tight tolerance ranges over the whole service life.

This is achieved through the use of particularly torsionoptimised insulating materials and mechanical attenuation elements with matching capacity values.

The highly abrasion-resistant, halogen-free and flameresistant PUR sheathing mixture in motor, hybrid/control cables and bus cables protects the torsion-optimised stranded elements from possible damage.

The highly abrasion-resistant, halogen-free TPE-sheath mixture matches the special requirements of the twistable FOC and individual wires, and also protects the stranded elements.

Unlike cables for linear E-ChainSystems®, the "mechanical stress" for these cables is in the combination of bending, torsion and centrifugal forces that cannot usually be determined by design in advance or during use by means of measurement.

For this reason, and unlike the situation with linear E-Chain® applications, a clear "yes/no" statement cannot be made about the possibility of using a certain cable in torsion applications.

To enable evaluation to take place nevertheless, based on sensible and comparable test results, the igus® "torsion test standard" was developed.

According to this standard, all Chainflex® ROBOT cables of a Triflex® R Energy Chain® are twisted with a fixed-point distance of one metre and a torsion of +/- 180° at least 3 million times. In addition, a test is carried out on a test bench with a chain length of approx. 2500 mm with 270° torsion with an extreme load through centrifugal forces and heavy blows such as those that can occur with an industrial robot.

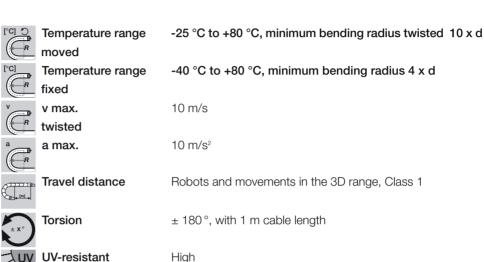
All the non-shielded, gusset-filling extruded standard Chainflex® control cables of the series CF5, CF77.UL.D and CF 9 correspond to the above-mentioned igus® standard and have been approved for use in torsion applications.

The following twistable CF ROBOT cable types are currently available:

- Hybrid/control cables
- Motor/servo cables
- Bus/data cables
- FOC cables

We can also offer you Chainflex® ROBOT cables pre-fitted with the plug-in connectors of your choice as ReadyCable®, or as a ready-to-install ReadyChain® cable assembly.

... no minimum order quantity



New! PUR Hybrid cable, twistable Chainflex® CF ROBOT9

- for twistable loads
- PUR outer jacket
- unshielded/shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant

OV-resistant Fight

Nominal voltage

Core insulation

CEI

Testing voltage 2000 V (following DIN VDE 0281-2).

Oil Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363 -10-2), Class 3.

300/500 V (following DIN VDE 0245).

Flame-retardant According to IEC 332-1, CEI 20-35, FT1.

Silicon-free Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 192).

Conductor Extremely bend-resistant cable

Element shield Extremely torsion resistant, tinned braided copper shield.

Coverage approx. 85% optical.

Outer jacket

Low-adhesion, halogen-free, highly abrasion-resistant mixture on

Following CEI 20-35

the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282 Part 10).

Colour: dark-blue (similar to RAL 5011)

Mechanically high-quality TPE mixture.

CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EG.

... no minimum order quantity

CFROBOT9 PUR 10 x d

Robot cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

215

Clean room

According to ISO Class 1. Outer jacket material complies with CF27.07.05.02.01.D, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements with torsion movements
- almost unlimited resistance to oil
- indoor and outdoor applications, UV-resistant
- especially for robots and movements in the 3D range
- Robots, handling, spindle drives

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm²]	approx. [mm]	[kg/km]		
CFROBOT9.001 ⁽¹⁾	5 G 1.0 + (2 x 1.0)C	9.5	75	129	New
CFROBOT9.002 ⁽¹⁾	6 G 0.75 + (3 x 0.75)C	12.0	76	143	New
CFROBOT9.003 ⁽¹⁾	2 G 0.5 + (2 x 0.5)C	10.0	27	75	New
CFROBOT9.004 ⁽¹⁾	16 G 1.0 + (2 x 1.0)C	16.5	177	326	New
CFROBOT9.005 ⁽¹⁾	23 G 1.0 + (2 x 1.0)C	19.5	241	478	New
CFROBOT9.006 ⁽¹⁾	24 G 1.0 + (2 x 1.0)C	20.0	251	484	New

⁽¹⁾ Delivery time upon inquiry

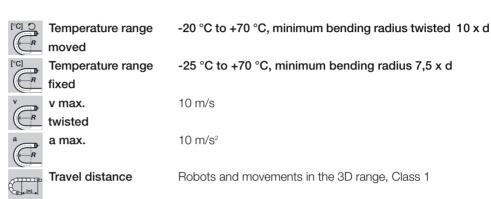
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-vellow earth core x = without earth core

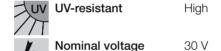
Order example: CFROBOT9.001 – in your desired length (0.5 m steps)

CFROBOT9 Chainflex® series .001 Code nominal cross section

Please use www.chainflex.eu/en/CFROBOT for your online order.


Delivery time 24h or today*

Delivery time means time until shipping of goods



New! PUR Bus cable, twistable Chainflex® CF ROBOT8

- for twistable loads
- PUR outer jacket
- shielded
- oil-resistant
- notch-resistant
- flame-retardant
- hydrolysis-resistant and microbe-resistant

Silicon-free

Innenmantel

Overall shield

Oil Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363 -10-2), oil 🜢

Flame-retardant According to IEC 332-1, CEI 20-35, FT1.

(following PV 3.10.7 - status 192). Conductor Fine-wire stranded conductor in especially bending-resistant

version consisting of bare copper wires (following EN 60228). Core insulation According to bus specification

Free from silicon which can affect paint adhesion

Core stranding According to bus specification

Core identification According to bus specification Delivery program

TPE mixture adapted to suit the requirements in Energy Chains®.

Outer jacket Low-adhesion, highly abrasion-resistant mixture on the basis of PUR, adapted to suit the requirements in Energy Chains®.

Coverage approx. 80% optical.

Colour: dark-blue (similar to RAL 5011)

Torsion resistant tinned braided copper shield.

Following CEI 20-35

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CFROBOT8 PUR 10 x d

+49-2203-96 49-222 Fel. +49-2203-96 49-0

217

CE Following 2006/95/EG

RoHS

Clean room

Following EU guideline (RoHS) 2002/95/EG. Lead free

According to ISO Class 1. material/cable tested by IPA according to ISO standard

14644-1

Typical application area

- for maximum load requirements with torsion movements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications. UV-resistant
- especially for robots and movements in the 3D range
- Robots, handling, spindle drives

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm ²]	approx. [mm]	[kg/km]		
CFROBOT8.001 (Profibus)	(2 x 0.35)C	8.0	22	57	New
CFROBOT8.022 (Can-Bus)	(4 x 0.5)C	7.0	39	65	New
CFROBOT8.045 (GigE)	4 x (2 x 0.14)C	9.5	35	65	New

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. **G** = with green-yellow earth core x = without earth core

Delivery program	Characteristic	Number of cores and	Colour code
Part No.	wave impedan-	conductor nominal	
	ce approx. $[\Omega]$	cross section [mm²]	
CFROBOT8.001	150	(2 x 0.35)C	red, green
CFROBOT8.022	120	(4 x 0.5)C	white, green, brown, yellow (star-quad stranding)
CFROBOT8.045	100	4 x (2 x 0.14)C	white-blue/blue, whiteorange/orange,
			white-green/green, white-brown/brown

Order example: CFROBOT8.001 - in your desired length (0.5 m steps)

CFROBOT8 Chainflex® series .001 Code nominal cross section

Please use www.chainflex.eu/en/CFROBOT for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

New! PUR Motor cable, twistable Chainflex® CF ROBOT6/7

- for twistable loads
- PUR outer jacket
- unshielded/shielded
- oil-resistant and coolant-resistant
- notch-resistant
- flame-retardant

UV-resistant

Flame-retardant

Overall shield

CEI

hydrolysis-resistant and microbe-resistant

[°C] [O]	Temperature range	-25 °C to +80 °C, minimum bending radius twisted 10 x $^{\circ}$
₩ R	moved	
[°C]	Temperature range	-40 °C to +80 °C, minimum bending radius 4 x d
(CR	fixed	
٧	v max.	10 m/s
R	twisted	
a R	a max.	10 m/s ²
(m)	Travel distance	Robots and movements in the 3D range, Class 1

High

Testing voltage 4000 V (following DIN VDE 0281-2).

Oil Oil-resistant (following DIN EN 60811-2-1, DIN EN 50363 -10-2), Class 3.

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free Free from silicon which can affect paint adhesion (following PV 3.10.7 – status 192).

Conductor Extremely bend-resistant cable

Core insulation Mechanically high-quality TPE mixture.

Coverage approx. 85% optical.

Low-adhesion, halogen-free, highly abrasion-resistant mixture on

the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282 Part 10).

Extremely torsion resistant, tinned braided copper shield.

Colour: dark-blue (similar to RAL 5011) Following CEI 20-35

CE Following 2006/95/EG

RoHS Lead free Following EU guideline (RoHS) 2002/95/EG.

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CFROBOT6/7 **PUR** 12.5 x d

Robot cable

Tel. +49-2203-96 49-0

219

Clean room

According to ISO Class 1. Outer jacket material complies with CF27.07.05.02.01.D, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements with torsion movements
- almost unlimited resistance to oil
- indoor and outdoor applications, UV-resistant
- especially for robots and movements in the 3D range
- Robots, handling, spindle drives

Delivery program	Number of cores and	External	Copper	Weight	
Part No.	conductor nominal	diameter	index	[kg/km]	
	cross section [mm²]	approx. [mm]	[kg/km]		
CFROBOT6.100.03 ⁽¹⁾	3 G 10	16.5	287	404	New
CFROBOT6.160.03 ⁽¹⁾	3 G 16	19.0	459	601	New
CFROBOT6.250.03 ⁽¹⁾	3 G 25	23.5	722	926	New
CFROBOT6.350.03 ⁽¹⁾	3 G 35	26.0	1020	1233	New
CFROBOT7.15.03.C(1)	(3 G 1.5)/D	8.0	58	95	New
CFROBOT7.25.03.C(1)	(3 G 2.5)/D	9.5	89	137	New
CFROBOT7.15.04.C(1)	(4 G 1.5)/D	8.5	74	121	New
CFROBOT7.25.04.C(1)	(4 G 2.5)/D	10.5	115	171	New

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-vellow earth core x = without earth core

Order example: CFROBOT6.100.03 – in your desired length (0.5 m steps) CFROBOT6 Chainflex® series .100 Code nominal cross section .03 Number of cores

Please use www.chainflex.eu/en/CFROBOT for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

TPE-Fibre optic cable, twistable Chainflex® CF ROBOT5

- for twistable loads
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- UV-resistant
- low-temperature-flexible
- hydrolysis-resistant and microbe-resistant

10 m/s

10 m/s²

T m

Temperature range

iomporataro rang

moved

Temperature range

fixed

v max.

twisted

a a

a max.

(m)

Travel distance

Robots and movements in the 3D range, Class 1

-20 °C to +60 °C, minimum bending radius twisted 12,5 x d

-25 °C to +60 °C, minimum bending radius 7.5 x d

±Χ°

Torsion

± 180°, with 1 m cable length

JUV

UV-resistant -

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568), Class 4.

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 192).

(<u>o</u>

Fibre optic cable 50/125 μm, 62.5/125 μm special fixed wire elements with

aramide strain relief.

Core stranding FOC wires stranded with high-tensile aramide dampers

around the GRP central element.

2

Outer jacket

Silicon-free

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in

Energy Chains®.

CE

CE

following 2006/95/EG

Lead free

Following EU guideline (RoHS) 2002/95/EG.

Clean-

Clean room

According to ISO Class 1. Outer jacket material complies with CF9.15.07, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements with torsion movements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for robots and movements in the 3D range
- Robots, handling

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

Class 7.1.4

CFROBO
TPE
12,5 x c

Delivery program	Number of fibres	Fibre	External	Weight
Part No.		diameter	diameter	[kg/km]
		approx. [µm]	approx. [mm]	
CFROBOT.500 ⁽¹⁾	2	62.5/125	8.5	87
CFROBOT.501	2	50/125	8.5	87

(1) Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Delivery program	Bandwidth	Attenuation	Bandwidth	Attenuation	Colour code
Part No.	with 850 nm	with 850 nm	with 1300 nm	with 1300 nm	
	[MHz x km]	[dB/km]	[MHz x km]	[dB/km]	
CFROBOT.500	160 - 200	3.2	200 - 500	0,9	blue with white numbers
CFROBOT.501	200 - 600	2.5 - 3.5	600 - 1200	0.7 - 1.5	blue with white numbers

Order example: CFROBOT5.001 – in your desired length (0.5 m steps) CFROBOT5 Chainflex® series .001 Code type of fibres

Please use www.chainflex.eu/en/CFROBOT for your online order.

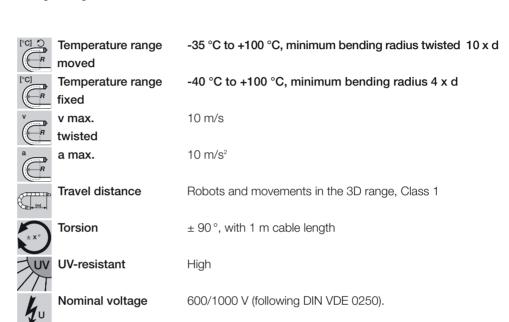
Delivery time 24h or today*

Delivery time means time until shipping of goods

+49-2203-96 49-222 Tel. +49-2203-9649-0

Robot cable

850 types from stock no cutting costs and order online www.igus.eu/en/CFCROBOT (for up to 10 cuts of the same type)


TPE-Robot cable Chainflex® CF ROBOT

- for twistable loads
- TPE outer jacket, shielded
- oil-resistant
- bio-oil-resistant
- PVC-free
- UV-resistant

Oil

Silicon-free

- flame-retardant
- hydrolysis-resistant and microbe-resistant

Testing voltage 4000 V (following DIN VDE 0281-2).

(following VDMA 24568), Class 4.

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

Free from silicon which can affect paint adhesion

According to IEC 332-1, CEI 20-33, FTT.

(following PV 3.10.7 – status 192).

Conductor Extremely bend-resistant cable

Core insulation Mechanically high-quality TPE mixture.

Overall shield Extremely torsion resistant tinned braided copper shield.

Coverage approx. 90% optical.

Outer jacket Low-adhesion mixture on the basis of TPE, especially abrasion-

resistant and highly flexible, adapted to suit the requirements in Energy Chains[®].

Colour: black (similar to RAL 9005) **UL/CSA**Style 10258 and 21387, 1000 V, 90 °C

CEI Following CEI 20-35

CE Following 2006/95/EG

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CFROBOT 10 x d

Robot cable

+49-2203-96 49-222 Tel. +49-2203-96 49-0

223

Lead free Following EU guideline (RoHS) 2002/95/EG.

Clean room

According to ISO Class 1. Outer jacket material complies with CF34.25.04, tested by IPA according to standard 14644-1

Typical application area

- for maximum load requirements with torsion movements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for robots and movements in the 3D range
- Robots, handling, spindle drives

Delivery program	Number of cores and	External	Copper	Weight
Part No.	conductor nominal	diameter	index	[kg/km]
	cross section [mm ²]	approx. [mm]	[kg/km]	
CFROBOT.035 ⁽¹⁾	(1 x 10.0)C	10.5	121	197
CFROBOT.036	(1 x 16.0)C	11.5	183	274
CFROBOT.037	(1 x 25.0)C	14.0	289	425
CFROBOT.038 ⁽¹⁾	(1 x 35.0)C	15.5	391	534
CFROBOT.039	(1 x 50.0)C	17.5	546	726

⁽¹⁾ Delivery time upon inquiry

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x = without earth core

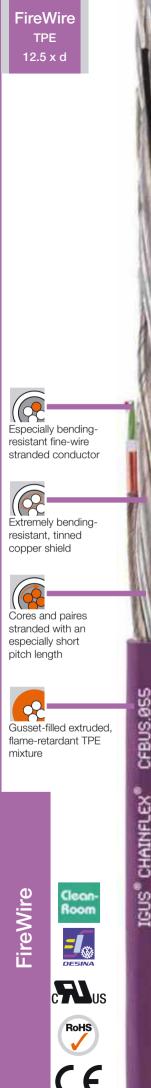
Order example: CFROBOT.035 - in your desired length (0.5 m steps) CFROBOT Chainflex® series .035 Code nominal cross section

Please use www.chainflex.eu/en/CFROBOT for your online order.

Delivery time 24h or today*

Delivery time means time until shipping of goods

igus® Chainflex® cables in application of a multi-dimensional moving energy chain Triflex® R for production robots.


850 types from stock no cutting costs ... and order online www.igus.eu/en/CFCROBOT (for up to 10 cuts of the same type)

Video-, vision engineering/bus technology

Chainflex® ReadyCable®

		Cable type	Jacket	Page
Video-, vision engineeri	ng/bus technolo	gy (with camera reference list ▶ page	224)	
	FireWire	FireWire special cable	TPE	226
	USB	USB special cable	TPE	230
	GigE	GigE special cable	TPE	232
	FOC	FOC special cable	PUR	234
	FOC	FOC special cable for robotic	TPE	238
	Koax	Koax special cable TPE	TPE	240

TPE Bus cable Chainflex® FireWire

- FireWire cable (IEEE 1394a)
- for maximum load requirements
- TPE outer jacket
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max. unsupported/gliding

a max.

UV-resistant

Nominal voltage

Testing voltage

oil 🜢

Oil

Flame-retardant

Silicon-free

Conductor

Core insulation

Core stranding

Core identification

Element shield

Outer jacket

-35 °C to +70 °C, minimum bending radius 12,5 x d

-40 °C to +70 °C, minimum bending radius 5 x d

10 m/s, 6 m/s

100 m/s²

Medium

30 V

500 V

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

(following VDMA 24568)

According to IEC 332-1, CEI 20-35, FT1

Free from silicon which can affect paint adhesion (following

PV 3.10.7 - status 1992).

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Mechanically high-quality PE mixture.

Cores and paires stranded with an especially short pitch length.

Core 0,15 mm²: orange/blue, green/red.

Core 0,34 mm²: black, white.

Extremely flexible, tinned copper shield over foil taping. Cover-

age approx. 70% linear, approx. 90% optical.

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in

Energy Chains®. Colour: violet (similar to RAL 4001)

... no minimum order quantity

FireWire 12,5 x d

Chainflex®

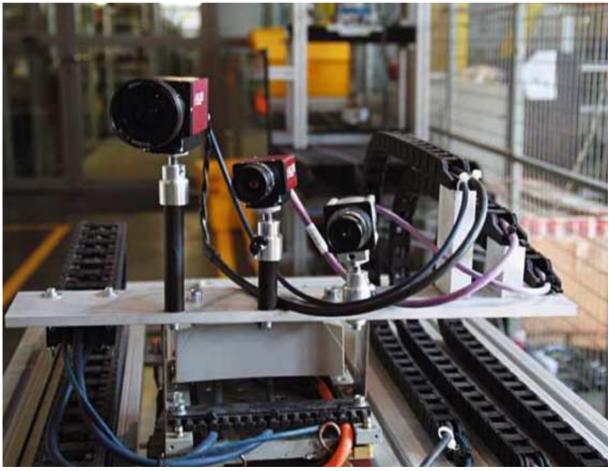
+49-2203-96 49-222 +49-2203-96 49-0

Tel. Fax

UL/CSA Style 1589 and 21371, 30 V, 80 °C

DESINA According to VDW, DESINA standardisation

Following 2006/95/EG


Lead free Following EU guideline (RoHS) 2002/95/EC.

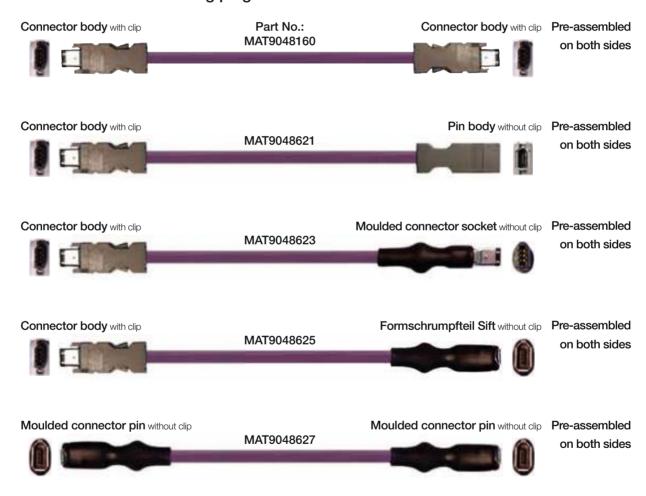
According to ISO Class 1, material/cable tested by IPA according to ISO standard 14644-1 Clean room

Typical application area

- FireWire cable for use in E-Chains® in industrial environments (Technical note ▶ page 466)
- Transmission lengths of up to 10 m

Test data ► page 40 Camera reference list ► page 244

More than 6.0 million movements have been successfully tested with the CFBUS.055 in E-Chains® with 10 m cable length.


TPE Bus cable Chainflex® FireWire

- FireWire cable (IEEE 1394a)
- for maximum load requirements
- TPE outer jacket
- oil-resistant
- flame-retardant

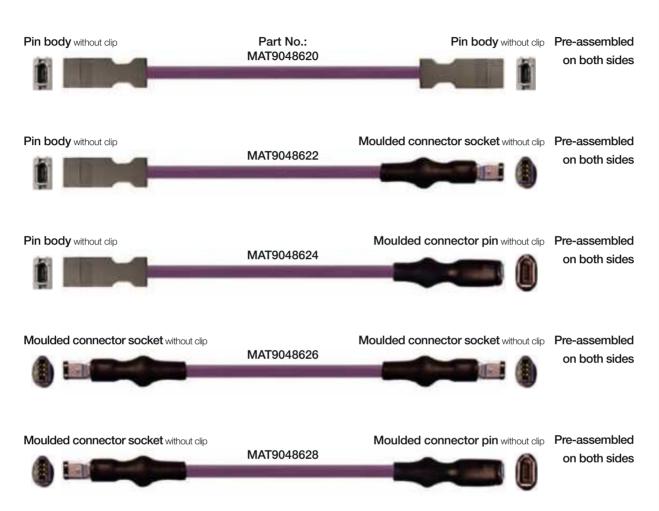
As well available on the roll, in the lengths you require.

Part No.	Number of cores and conductor nominal cross section [mm²]	External diameter approx. [mm]	Copper index [kg/km]	Weight [kg/km]
CFBUS.055	2 (2 x 0.15) C+2 x (0.34) C	7.5	42	118

Choose from the following plug-cable combinations

FireWire TPE 12.5 x d

> Chainflex[®] FireWire


Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

TPE Bus cable Chainflex® USB

- USB cable 2.0
- for maximum load requirements
- TPE outer jacket
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

a max.

100 m/s²

10 m/s, 6 m/s

UV-resistant

Medium 30 V

Nominal voltage

Testing voltage 500 V

Oil

(following VDMA 24568)

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1

-35 °C to +70 °C, minimum bending radius 12.5 x d

-40 °C to +70 °C, minimum bending radius 5 x d

Silicon-free

PV 3.10.7 - status 1992).

Conductor

Fine-wire stranded conductor in especially bending-resistant

Core insulation

Mechanically high-quality PE mixture.

Core stranding

Cores and paires stranded with an especially short pitch length

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

Free from silicon which can affect paint adhesion (following

version consisting of bare copper wires (following EN 60228).

Core identification

Core 0.5 mm2: red, black

Core 0.08 mm²: white, green (CFBUS.065). Core 0.24 mm²: white, green (CFBUS.066).

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Outer jacket Low-adhesion mixture on the basis of TPE, especially abrasion-

resistant and highly flexible, adapted to suit the requirements in

Energy Chains®. Colour: violet (similar to RAL 4001)

UL/CSA

Style 1589 and 21371, 30 V, 80 °C

DESINA

CE

According to VDW, DESINA standardisation

Following 2006/95/EG

... no minimum order quantity

Fax

Following EU guideline (RoHS) 2002/95/EC. Lead free

Clear Roon

RoHS

Clean room

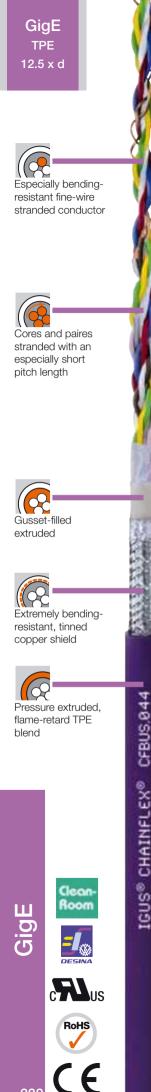
According to ISO Class 1, material/cable tested by IPA according to ISO standard 14644-1

Typical application area

- USB 2.0 cable for use in E-Chains[®] in industrial environments (Technical note ➤ page 466)
- Transmission lengths of up to 6 m (CFBUS.065)
- Transmission lengths of up to 10 m (CFBUS.066)

Camera reference list ► page 244

As well available on the roll, in the lengths you require.


Part No.	Number of cores and conductor nominal cross section [mm²]	External diameter approx. [mm]	Copper index [kg/km]	Weight [kg/km]
CFBUS.065	(2 x 0.5+1 x (2 x 0.08))C	5.0	26	45
CFBUS.066*	(2 x 0.5+1 x (2 x 0.24))C	6.0	32	56

^{*} CFBUS.066 is delivered with form shrink hose over USB housing

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Choose from the following plug-cable combinations

TPE Bus cable Chainflex® GigE

- GigE cable
- Ethernet special cable for heavy-duty use
- TPE outer jacket
- oil-resistant
- flame-retardant

Temperature range

moved

Temperature range

fixed

v max.

unsupported/gliding

a max.

10 m/s, 6 m/s

100 m/s²

UV-resistant

Medium

Nominal voltage

30 V

Testing voltage

500 V

oil 🜢

Oil

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

-35 °C to +70 °C, minimum bending radius 12.5 x d

-40 °C to +70 °C, minimum bending radius 7.5 x d

(following VDMA 24568)

Flame-retardant

According to IEC 332-1, CEI 20-35, FT1.

Silicon-free

Free from silicon which can affect paint adhesion (following PV 3.10.7 - status 1992).

Conductor Core insulation

Fine-wire stranded conductor in especially bending-resistant version consisting of bare copper wires (following EN 60228).

Special PP-isolating mixture

Core stranding

2 cores each stranded in pairs with short pitch lengths, core

pairs also stranded with short pitch lengths.

Core identification

Farbcode nach DIN 47100

Inner jacket

TPE mixture adapted to suit the requirements in Energy Chains®.

Overall shield

Extremely bending-resistant, tinned braided copper shield. Coverage approx. 70% linear, approx. 90% optical.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in

Energy Chains®. Colour: violet (similar to RAL 4001)

UL/CSA

Style 1589 and 21371, 30 V, 80 °C

Following 2006/95/EG

DESINA

According to VDW, DESINA standardisation

... no minimum order quantity

Chainflex®

Lead free

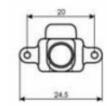
Following EU guideline (RoHS) 2002/95/EC.

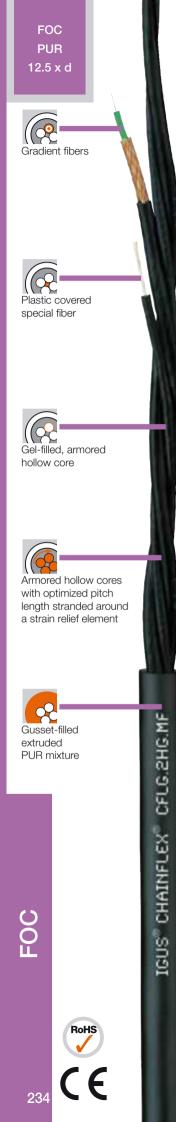
According to ISO Class 1, material/cable tested by IPA according to ISO standard 14644-1 Clean room

Typical application area

- Ethernet cable for use in E-Chains® in industrial environments (Technical note ➤ page 466)
- Transmission lengths of up to 50 m

Camera reference list ► page 244


As well available on the roll, in the lengths you require.


Part No.:	Number of cores and conductor nominal cross section [mm²]	External diameter approx. [mm]	Copper index [kg/km]	Weight [kg/km]
CFBUS.044	4x (2 x 0,15) C	8,0	35	79

Choose from the following plug-cable combinations

Connector RJ45 Metall, 8 poles	Part No.: GIG9040001	Connector RJ45 Metall, 8 poles	Pre-assembled on both sides
Connector RJ45 Metall, 8 poles	Part No.: GIG9040002	Plug made of RJ45 plastic with knurled screws	Pre-assembled on both sides

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

PUR Fibre optic cable (FOC) Chainflex® Glass fibre

- Gradient glass fibre cable 50/125 μm, 62.5/125 μm
- PUR outer jacket
- oil-resistant
- UV-resistant

Temperature range

moved

[°C]

Temperature range

fixed

v max. unsupported/gliding

UV-resistant

10 m/s, 6 m/s

a R

a max.

20 m/s²

//

Oil

High

il 🖢

Oil-resistant (following DIN EN 60811-2-1)

Offshore

MUD-resistant following NEK 606

(Xe)

Silicon-free

Free from silicon which can affect paint adhesion

(following PV 3.10.7 - status 1992).

(P

Fibre cables

 $50/125~\mu m,\,62.5/125~\mu m$ fibres in gel-filled hollow cores.

-20 °C to +60 °C, minimum bending radius 12.5 x d

-25 °C to +60 °C, minimum bending radius 7.5 x d

Core stranding

Hollow cores with integrated FOC-fibres stranded with two

strain relief elements.

Core identification

Cores black with white numerals.

9

Outer jacket

Low-adhesion mixture on the basis of PUR, adapted to suit the requirements in Energy Chains® (following DIN VDE 0282

Part 10). Colour: black (similar to RAL 9005)

 $C \in$

CE

Following 2006/95/EG

Lead free

Following EU guideline (RoHS) 2002/95/EC.

... no minimum order quantity

Chainflex[®] LWL

Typical application area

- Fiber optic cable for use in E-Chains® in industrial environments
- Transmission lengths of up to 500 m

Test data ➤ page 38 Camera reference list ➤ page 244

Harnessed igus® E6 system on a camera application.

850 types from stock no cutting costs ...

PUR Fibre optic cable (FOC) Chainflex® Glass fibre

- Gradient glass fibre cable 50/125 μm, 62.5/125 μm
- PUR outer jacket
- oil-resistant
- UV-resistant

As well available on the roll, in the lengths you require.

Part No.	Number of fibers	Fibre diameter approx. [µm]	External diameter approx. [mm]	Weight [kg/km]
CELC 2HG ME 50/125	0	50/125	0.0	85

^{* 2} ST coupling pieces needed to be ordered extra, if used as extension cable (MAT0176314).

 $\mathring{\mathring{1}}$

FOC patch cables for static installation:

(Note: FOC patch cable extensions are for protected installation only)

Part No.	Number of fibers	Fibre diameter approx. [µm]	External diameter approx. [mm]	Weight [kg/km]
FFLG.2G.50/125	2	50/125	6.5	27
Connector ST	LW	L90412399	Conne	ector LC Pre-assembled on both sides*
Connector ST	LW	L90412400	Conne	on both sides
Connector LC	LW	L90412401	Conne	on both sides
FFLG.2G.62.5/125	2	62.5/125	6.5	27
Connector ST	LW	L90412402	Conne	ector LC Pre-assembled on both sides*
Connector ST	LW	L90412403	Conne	ector ST Pre-assembled on both sides
Connector LC	LW	L90412404	Conne	ector LC Pre-assembled on both sides

^{* 2} ST coupling pieces needed to be ordered extra, if used as extension cable (MAT0176314).

TPE Fibre optic cables, twistable Chainflex® CF ROBOT-LWL

- for twistable loads
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- UV-resistant
- low-temperature-flexible

[°C] 5

Temperature range

moved

[°C]

Temperature range

fixed

v max.

twisted

Torsion

UV-resistant

Fibre Cables

10 m/s

a max.

Oil

10 m/s²

±x°

High

//[

oil 🖢

(following VDMA 24568)

Silicon-free Free from silicon which can affect paint adhesion

±180°, with 2 m cable length

(following PV 3.10.7 – status 1992).

aramide strain relief.

Core stranding FOC wires stranded with high-tensile aramide dampers

around the GRP central element.

00

Outer jacket Low-adhesion mixture on the basis of TPE, especially abrasion-

resistant and highly flexible, adapted to suit the requirements

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant

50/125 µm, 62.5/125 µm special fixed wire elements with

-20 °C to +60 °C, minimum bending radius twisted 12.5 x d

-25 °C to +60 °C, minimum bending radius twisted 7.5 x d

in Energy Chains®.

CE

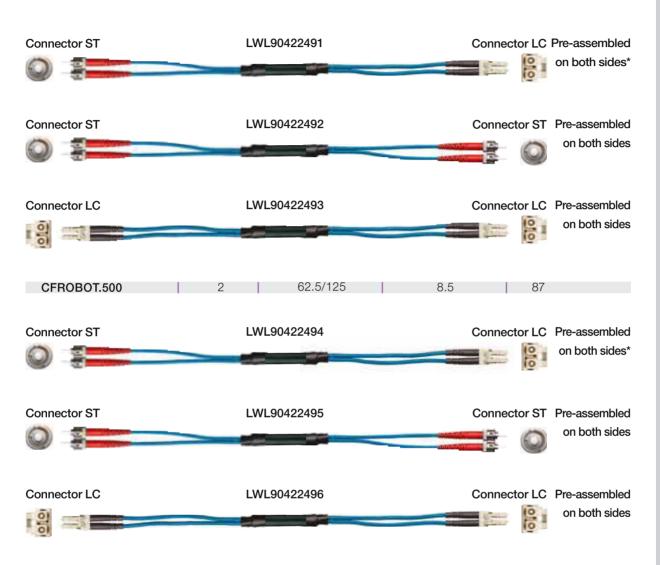
E Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC

Clean room According to ISO Class 1. Outer jacket material complies with

CF9.15.07, tested by IPA according to standard 14644-1

Typical application area


- for maximum load requirements with torsion movements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for robots and movements in the 3D range
- Robots, handling

... no minimum order quantity

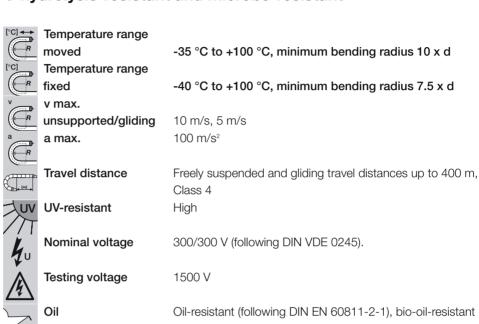
As well available on the roll, in the lengths you require.

Part No.	Number of fibers	Fibre diameter approx. [µm]	External diameter approx. [mm]	Weight [kg/km]
CFROBOT.501	2	50/125	8.5	87

^{* 2} ST coupling pieces needed to be ordered extra, if used as extension cable (MAT0176314).

Chainflex[®] FOC

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222



TPE Koax cable Chainflex® CF Koax 1

- 75 Ω koax cable for maximum load requirements
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

(following VDMA 24568), Class 4

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 – status 1992).

Conductor Multi-wire; adapted in single-wire diameter and pitch length to

suit the requirements in Energy Chains®.

Core insulation Special FEP-isolating mixture.

Core stranding Cores stranded in one layer with especially short pitch length.

Core identification Schedule delivery program

Element shield Extremely bending-resistant, tinned braided copper shield.

Coverage approx. 70% linear, approx. 90% optical.

Element jacket TPE mixture adapted to suit the requirements in Energy Chains®.

Outer jacket Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements

in Energy Chains®.

Colour: dark-blue (similar to RAL 5011)

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

CF Koax 1 10 x d

+49-2203-96 49-222

Tel. +49-2203-96 49-0

CE CE Following 2006/95/EG

Lead free Following EU guideline (RoHS) 2002/95/EC.

Clean room According to ISO Class 1. Outer jacket material complies with CF9.15.07, tested by

IPA according to standard 14644-1

Info

The coax elements used in cables of the CF Koax1 series are comparable with a

HF75-0.3/1.6 according to MIL-C-17/94-RG179 and thus fit in an RG179 plug!

Typical application area

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m
- storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

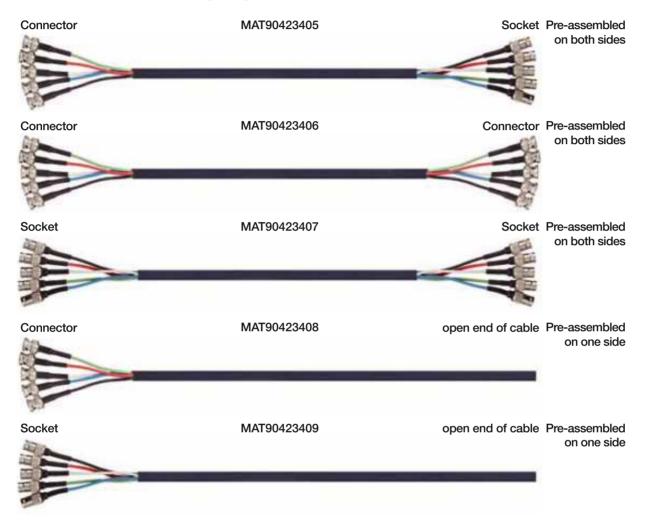
TPE Koax cable Chainflex® CF Koax 1

- 75 Ω koax cable for maximum load requirements
- TPE outer jacket
- oil-resistant
- bio-oil-resistant
- UV-resistant
- hydrolysis-resistant and microbe-resistant

As well available on the roll, in the lengths you require.

Part No.	Number of fibers	External diameter approx. [µm]	Copper index [kg/km]	Weight [kg/km]
CFKoax1.01	1 coaxial element	4,5	9,0	25

Choose from the following plug-cable combinations



As well available on the roll, in the lengths you require.

Part No.	Number of fibers	External diameter approx. [µm]	Copper index [kg/km]	Weight [kg/km]
CFKoax1.05	5 coaxial elements	10,0	47	135

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with green-yellow earth core x = without earth core

Choose from the following plug-cable combinations

Camera reference list - Selection chart

CFBUS.065 USB up to 5 m

CFBUS.066 USB up to 10 m

CFBUS.055 FireWire up to 10 m

CFLG.2HG LWL up to 400 m CFBUS.044 GigE up to 50 m

Chainflex®

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

<u> </u>	•	-	•	<u> </u>
		Guppy F-033B	Pike F-032B Fiber	GB650, GB650c
	Guppy F-033C	Pike F-032C Fiber	GB660, GB660c	
	Guppy F-036B	Pike F-100B Fiber	GB1380, GB1380c	
	Guppy F-036C	Pike F-100C Fiber	GB2450, GB2450c	
	Guppy F-038B	Pike F-145B Fiber	GC640, GC640c	
	Guppy F-038C	Pike F-145C Fiber	GC650, GC650c	
	Guppy F-038B NIR	Pike F-210B Fiber	GC655, GC655c	
	Guppy F-038C NIR	Pike F-210C Fiber	GC660, GC660c	
	Guppy F-044B	Pike F-421B Fiber	GC750, GC750c	
	Guppy F-044C	Pike F-421C Fiber	GC780, GC780C	
	Guppy F-044B NIR	Pike F-505B Fiber	GC1020, GC1020c	
	Guppy F-044C NIR	Pike F-505C Fiber	GC1280	
	Guppy F-046B	Stingray F-033B Fiber	GC1290, GC1290c	
	Guppy F-046C	Stingray F-033C Fiber	GC1350, GC1350c	
	Guppy F-080B	Stingray F-046B Fiber	GC1380, GC1380c	
	Guppy F-080C	Stingray F-046C Fiber	GC1380CH, GC1380H	
	Guppy F-146B	Stingray F-080B Fiber	GC1600, GC1600c	
	Guppy F-146C	Stingray F-080C Fiber	GC1600CH, GC1600H	
	Guppy F-503B	Stingray F-125B Fiber	GC2450, GC2450c	
	Guppy F-503C	Stingray F-125C Fiber	GE640, GE640c	
	Marlin F-033B	Stingray F-145B Fiber	GE650, GE650c	
	Marlin F-033C	Stingray F-145C Fiber	GE680, GE680c	
	Marlin F-046B	Stingray F-146B Fiber	GE1050, GE1050c	
	Marlin F-046C	Stingray F-146C Fiber	GE1350, GE1350c	
	Marlin F-080B	Stingray F-201B Fiber	GE1380, GE1380c	
	Marlin F-080C	Stingray F-201C Fiber	GE1600, GE1600c	
	Marlin F-080B 30fps	Stingray F-504B Fiber	GE1650, GE1650c	
	Marlin F-080C 30fps	Stingray F-504C Fiber	GE1660, GE1660c	
	Marlin F-131B	Sungray 1 -3040 Fiber	GE1900, GE1900c	
	Marlin F-131C		GE1910, GE1910c	
	Marlin F-131B NIR			
			GE2040, GE2040c	
	Marlin F-145B2		GE4000, GE4000c	
	Marlin F-145C2		GE4900, GE4900c	
	Marlin F-146B		GS650, GS650c	
	Marlin F-146C		GS660, GS660c	
	Marlin F-201B		GS1380, GS1380c	
	Marlin F-201C		GS2450, GS2450c	
	Oscar F-320C			
	Oscar F-510C			
	Oscar F-810C			
ARTCAM	ARTCAM			
640-THERMO	640-THERMO			
320-THERMO	320-THERMO			
150P4-HDMI	150P4-HDMI			
150P4-HDMI-BW	150P4-HDMI-BW			
130MI-HDMI	130MI-HDMI			
130MI-HDMI-BW	130MI-HDMI-BW			
150P4-MOUT-DUAL	150P4-MOUT-DUAL			
150P4-MOUT-DUAL-BW	150P4-MOUT-DUAL-BW			
130MI-MOUT-DUAL	130MI-MOUT-DUAL			
130MI-MOUT-DUAL-BW	130MI-MOUT-DUAL-BW			
625KY	625KY			
625KY-BW	625KY-BW			
500P II	500P II			
274KY	274KY			
274KV D\N/	274KV DW			

274KY-BW

274KY-BW

igus[®] GmbH 51147 Köln, Germany

Camera reference list - Selection chart

ARTCAM-...

150P III 150P III -BW

445KY

098 II

900MI

500MI

300MI

130MI

036MI

900SS

500SS

300SS

445KY-BW

098 II -BW

500MI-BW

130MI-BW

036MI-BW

500SS-BW

(R)

CFBUS.065 CFBUS.066 CFBUS.055 CFLG.2HG **CFBUS.044 USB USB FireWire** LWL GigE up to 10 m up to 400 m up to 50 m up to 5 m up to 10 m

098 II -BW
900MI
500MI
500MI-BW
300MI
130MI
130MI-BW
036MI
036MI-BW
900SS
500SS
500SS-BW

ARTCAM-...

150P III -BW

150P III

445KY 445KY-BW

098 II

300SS

22222	00000		
130SS	130SS		
130SS-BW	130SS-BW		
036SS	036SS		
036SS-BW	036SS-BW		
D22MINI	022MINI		
022MINI-BW	022MINI-BW		
		A102f	piA640-210gm/gc
		A102fc	piA1000-48gm/gc
		A311f	piA1600-35gm/gc
		A311fc	piA1900-32gm/gc
		A312f	piA2400-12gm/gc
		A312fc	ruL1024-19gm
		A601f	ruL1024-36gm
		A601fc	ruL1024-57gm
		A631f	ruL2048-10gm
		A631fc	ruL2048-19gm
		A641f	ruL2048-30gm
		A641fc	ruL2098-10gc
			scA640-70gm/gc
			scA640-74gm/gc
			scA750-60gm/gc
			scA780-54gm/gc
			scA1000-20gm/gc
			scA1000-30gm/gc
			scA1390-17gm/gc
			scA1400-17gm/gc
			scA1400-30gm/gc
			scA1600-14gm/gc
			scA1600-14gm/gc

Fax

Camera reference list - Selection chart

CFBUS.065 USB up to 5 m

UI-1220-M/C

UI-1540-M

UI-1640-C

UI-1550-C

UI-1460-C

UI-1480-M/C

UI-2210-M/C

UI-2410-M/C

UI-2220-M/C

UI-2230-M/C

UI-2240-M/C

UI-2250-M/C

UI-1220RE-M/C

UI-1540RE-M

UI-1640RE-C

UI-1550RE-C

UI-1460RE-C

UI-1480RE-M/C

UI-2210RE-M/C

UI-2410RE-M/C UI-2220RE-M/C

UI-2230RE-M/C

UI-2240RE-M/C

UI-2250RE-M/C

CFBUS.066 USB up to 10 m

FWX03

FWX03c

FWX05c-II

FWX05-II

FWX14c

FWX20

FWX20c

FWXC03c

FWXC13c

FWXC30c

FWL120

FQX50c

FQX80c

UI-1220RE-M/C

UI-1540RE-M

UI-1640RE-C

UI-1550RE-C

UI-1460RE-C

UI-1480RE-M/C

UI-2210RE-M/C

UI-2410RE-M/C

UI-2220RE-M/C

UI-2230RE-M/C

UI-2240RE-M/C

UI-2250RE-M/C

CFBUS.055 FireWire up to 10 m

CFLG.2HG **LWL** up to 400 m

TXGC03

TXGC03c

TXG03 [-P]

TXG03c [-P]

TXG04 [-P]

TXG04c [-P]

TXG06 [-P]

CFBUS.044 GigE up to 50 m

Chainflex®

FWX06 FWX06c FWX08 FWX08c FWX131 FWX131c FWX14

TXG06c [-P] TXG08 [-P] TXG08c [-P] TXG13 [-P] TXG13c [-P] TXG14 [-P]

> TXG14c [-P] TXG14f [-P] TXG14cf [-P] TXG20 [-P] TXG20c [-P]

TXG50 [-P] TXG50c [-P]

UI-5220SE-M/C UI-5540SE-M UI-5640SE-C UI-5550SE-C UI-5460SE-C

UI-5480SE-M/C

UI-6210SE-M/C

UI-6410SE-M/C

UI-6220SE-M/C

UI-6230SE-M/C

UI-6240SE-M/C

UI-6250SE-M/C

UI-5220HE-M/C

UI-5540HE-M

UI-5640HE-C

UI-5550HE-C

UI-5460HE-C

UI-5480HE-M/C

UI-6210HE-M/C

UI-6410HE-M/C

UI-6220HE-M/C

UI-6230HE-M/C

UI-6240HE-M/C

UI-6250HE-M/C

51147 Köln, Germany gus[®] GmbH

Fax +49-2203-96 49-222

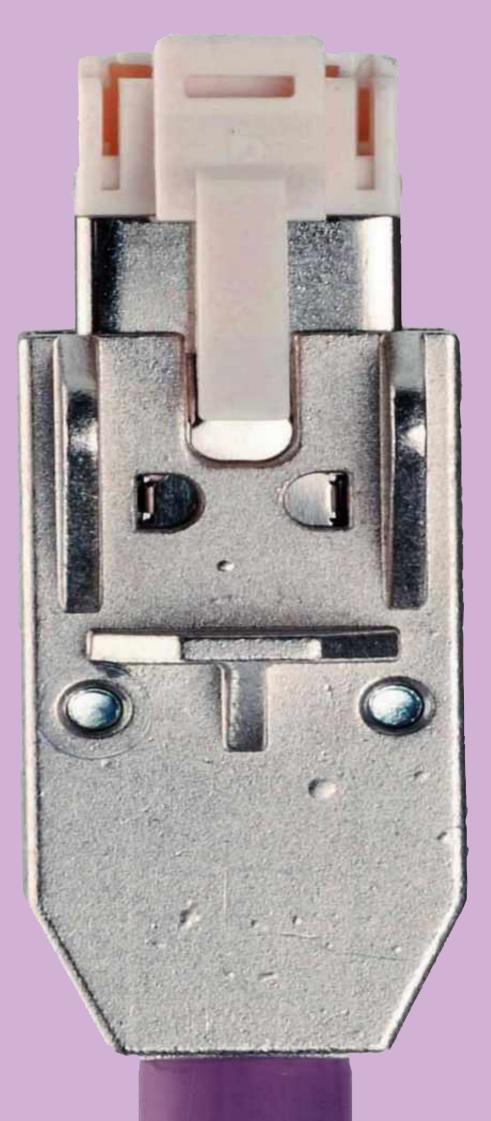
Tel. +49-2203-96 49-0

www.igus.eu

Content

Chainflex®

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0


Camera refere	191			
CFBUS.065 USB up to 5 m	CFBUS.066 USB up to 10 m	CFBUS.055 FireWire up to 10 m	CFLG.2HG LWL up to 400 m	CFBUS.044 GigE up to 50 m
DMK 21AU04	DMK 21AU04	DMK 21F04		
DFK 21AU04	DFK 21AU04	DFK 21F04		
DBK 21AU04	DBK 21AU04	DMK 21AF04		

JRCE TANDARDS	
GSOL BASED ON S	
MAGIN	
18	

USB	USB	FireWire	LWL	GigE
up to 5 m	up to 10 m	up to 10 m	up to 400 m	up to 50 m
DMK 21AU04	DMK 21AU04	DMK 21F04		
DFK 21AU04	DFK 21AU04	DFK 21F04		
DBK 21AU04	DBK 21AU04	DMK 21AF04		
DMK 31AU03	DMK 31AU03	DFK 21AF04		
DFK 31AU03	DFK 31AU03	DBK 21AF04		
DBK 31AU03	DBK 31AU03	DMK 31AF03		
DMK 41AU02	DMK 41AU02	DFK 31AF03		
DFK 41AU02	DFK 41AU02	DBK 31AF03		
DBK 41AU02	DBK 41AU02	DMK 41AF02		
DMK 21BU04	DMK 21BU04	DFK 41AF02		
DFK 21BU04	DFK 21BU04	DBK 41AF02		
DBK 21BU04	DBK 21BU04	DMK 21BF04		
DMK 31BU03	DMK 31BU03	DFK 21BF04		
DFK 31BU03	DFK 31BU03	DBK 21BF04		
DBK 31BU03	DBK 31BU03	DMK 31BF03		
DMK 41BU02	DMK 41BU02	DFK 31BF03		
DFK 41BU02	DFK 41BU02	DBK 31BF03		
DBK 41BU02	DBK 41BU02	DMK 41BF02		
DMK 21BU04.H	DMK 21BU04.H	DFK 41BF02		
DFK 21BU04.H	DFK 21BU04.H	DBK 41BF02		
DBK 21BU04.H	DBK 21BU04.H	DMK 21BF04.H		
DMK 31BU03.H	DMK 31BU03.H	DFK 21BF04.H		
DFK 31BU03.H	DFK 31BU03.H	DBK 21BF04.H		
DBK 31BU03.H	DBK 31BU03.H	DMK 31BF03.H		
DMK 41BU02.H	DMK 41BU02.H	DFK 31BF03.H		
DFK 41BU02.H	DFK 41BU02.H	DBK 31BF03.H		
DBK 41BU02.H	DBK 41BU02.H	DMK 41BF02.H		
		DFK 41BF02.H		
		DBK 41BF02.H		
		DMK 21AF04-Z		
		DFK 21AF04-Z		
		DBK 21AF04-Z		
		DMK 31AF03-Z		
		DFK 31AF03-Z		
		DBK 31AF03-Z		
		DMK 21BF04-Z		
		DFK 21BF04-Z		
		DBK 21BF04-Z		
		DMK 31BF03-Z		
		DFK 31BF03-Z		
		DBK 31BF03-Z		
		DMK 21BF04-Z.H		
		DFK 21BF04-Z.H		
		DBK 21BF04-Z.H		
		DMK 31BF03-Z.H		
		DFK 31BF03-Z.H		
		DBK 31BF03-Z.H		

Network-/Ethernet-/FOC-cable

Chainflex® ReadyCable®

		Cable type	Jacket	Page		
Network-/Ethernet-/FOC-cable						
	CFLG.6G	Gradient fiber glass cable	TPE	250		
	CFLG.12G	Gradient fiber glass cable	TPE	252		
	CAT5	Ethernet special cable	TPE	254		
	CAT6	Ethernet special cable	TPE	256		

TPE Fibre optic cable Chainflex® Fibre Optic

- Gradient glass-fiber cable for heavy-duty use
- TPE outer jacket
- halogen-free
- low-temperature-flexible up to -40 °C

Temperature range

Temperature range

fixed

v max.

unsupported/gliding

Oil

a max.

10 m/s. 6 m/s

20 m/s²

UV-resistant

High

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant (following VDMA 24568)

oil 🜢

Free from silicon which can affect paint adhesion Silicon-free

(following PV 3.10.7 - status 1992).

Halogen-free

Following EN 50267-2-1.

Fibre cables

50/125 µm, 62.5/125 µm fibres in gel-filled hollow cores.

-40 °C to +60 °C, minimum bending radius 15 x d

-40 °C to +60 °C, minimum bending radius 8.5 x d

Core stranding

Stranded GRP rods with integrated torsion protection braid in

the outer jacket over gel-filled fiber sheath.

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasionresistant and highly flexible, adapted to suit the requirements in

Energy Chains®. Colour: black (similar to RAL 9005)

Following 2006/95/EG

Lead free

Following EU guideline (RoHS) 2002/95/EC.

Typical application area

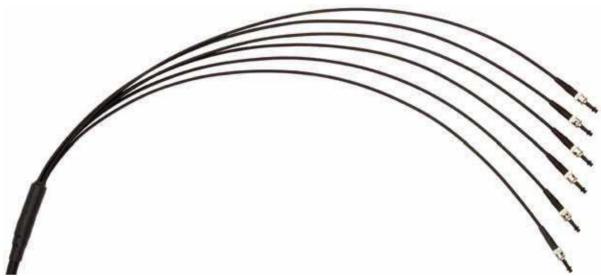
- for maximum load requirements
- Maximum EMC protection, with high transmission qualities in terms of glass-specific requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications
- only for freely suspended and gliding travel distances up to 500 m and more
- Outdoor ship to shore, crane applications, conveyer technology

... no minimum order quantity

CFLG.6G TPE 15 x d

Chainflex®

+49-2203-96 49-222 Tel. +49-2203-96 49-0



Test data ► page 38

Chainflex® TPE gradient glass-fiber cable

Delivery program igus® Number of cores and Part No. conductor nominal [mm] cross section [mm²]

On both ends BFOC(ST) connectors	LWL9040030	6x50/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to SC	LWL9040031	6x50/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to LC	LWL9040032	6x50/125	11.5
On both ends BFOC(ST) connectors	LWL9040045	6x62.5/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to SC	LWL9040046	6x62.5/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to LC	LWL9040047	6x62.5/125	11.5

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

TPE Fibre optic cable Chainflex® Fibre Optic

- Gradient glass-fiber cable for heavy-duty use
- TPE outer jacket
- halogen-free
- low-temperature-flexible up to -40 °C

Temperature range

moved

[°C]

Temperature range

fixed

v max.

unsupported/gliding

a max.

Oil

10 m/s, 6 m/s

20 m/s²

VV

UV-resistant

High

Oil-resistant (following DIN EN 60811-2-1), bio-oil-resistant (following VDMA 24568)

oil 6

Silicon-free Free from silicon which can affect paint adhesion

(following PV 3.10.7 – status 1992).

Hal

Halogen-free

Following EN 50267-2-1.

(<u>o</u>

Fibre cables

 $50/125~\mu m,\,62.5/125~\mu m$ fibres in gel-filled hollow cores.

-40 °C to +60 °C, minimum bending radius 15 x d

-40 °C to +60 °C, minimum bending radius 8.5 x d

Core stranding

Stranded GRP rods with integrated torsion protection braid in the outer jacket over gel-filled fiber sheath.

6

Outer jacket

Low-adhesion mixture on the basis of TPE, especially abrasion-resistant and highly flexible, adapted to suit the requirements in

Energy Chains®. Colour: black (similar to RAL 9005)

CE

CE

Following 2006/95/EG

Lead free

Following EU guideline (RoHS) 2002/95/EC.

Typical application area

- for maximum load requirements
- Maximum EMC protection, with high transmission qualities in terms of glass-specific requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications
- only for freely suspended and gliding travel distances up to 500 m and more
- Outdoor ship to shore, crane applications, conveyer technology

... no minimum order quantity

CFLG.12G TPE 15 x d

> Chainflex® Fibre Optic

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

Test data ► page 38

Chainflex® TPE gradient glass-fiber cable

 Delivery program
 igus®
 Number of cores and conductor nominal cross section [mm²]
 Ø

On both ends BFOC(ST) connectors	LWL9040060	12x50/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to SC	LWL9040061	12x50/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to LC	LWL9040062	12x50/125	11.5
On both ends BFOC(ST) connectors	LWL9040075	12x62.5/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to SC	LWL9040076	12x62.5/125	11.5
On both ends BFOC(ST) connectors			
incl. conversion to LC	LWL9040077	12x62.5/125	11.5

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

AT:

Chainflex® network technique CAT5 cables harnessed

Technical information

- oil-resistant
- UV-resistant
- halogen-free
- external jacket on the basis of TPE
- Shield: extremely bending-resistant copper shield with greatest possible coverage over aluminiumcoated plastic foil.
- Temperature range (moved): -35 °C to +70 °C

Chainflex®-TPE Energy Chains® Ethernet special cable

Delivery program igus® Number of cores ø [mm] Bending Part No. and conductor radius nominal cross section [mm²] CAT5 - 4 pole Straight CAT9040001 (2x2x0.25)C 7.0 12.5 x d CAT5 - 8 pole Straight CAT9040020 (4x2x0.15)C 8.0 12.5 x d CAT5 - 8 pole Straight CAT9040060 (4x2x0.15)C 8.0 12.5 x d CAT5 - 8 pole CAT9040100 Straight (4x2x0.15)C 8.0 12.5 x d CAT5 - 8 pole CAT9040140 Straight (4x2x0.15)C 8.0 12.5 x d CAT5 - 8 pole Straight CAT9040180 8.0 12.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x = without earth core

<u>Ге</u>

Minimum bending radius for use in Energy Chains®:

12.5 x cable diameter

Colour: violet (similar to RAL 4001)

Chainflex®-TPE Energy Chains® Ethernet special cable

 Delivery program
 igus®
 Number of cores
 Ø [mm]
 Bending

 Part No.
 and conductor
 radius

 nominal cross

		section [mm²]			
CAT5 – 8 pole					
Cross-Over	CAT9040040	(4x2x0.15)C	8.0	12.5 x d	
776					
CAT5 – 8 pole					
Cross-Over	CAT9040080	(4x2x0.15)C	8.0	12.5 x d	
CAT5 – 8 pole					
Cross-Over	CAT9040120	(4x2x0.15)C	8.0	12.5 x d	
		_			
CAT5 – 8 pole					
Cross-Over	CAT9040160	(4x2x0.15)C	8.0	12.5 x d	
			-		
CAT5 – 8 pole					
Cross-Over	CAT9040200	(4x2x0.15)C	8.0	12.5 x d	

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x = without earth core

Chainflex® network technique CAT6 cables harnessed

Technical information

- oil-resistant
- UV-resistant
- halogen-free
- external jacket on the basis of TPE
- Shield: extremely bending-resistant copper shield with greatest possible coverage over aluminiumcoated plastic foil.
- Temperature range (moved): -35 °C to +70 °C

Chainflex®-TPE Energy Chains® Ethernet special cable

Delivery program

igus® Part No. Number of cores and conductor nominal cross section [mm²]

ø [mm]

Bending radius

CAT6 – 8 pole				
Straight	CAT9040600	(4x(2x0.14)C)C	10.0	12.5 x d

CAT6 – 8 pole				
Straight	CAT9040640	(4x(2x0.14)C)C	10.0	12.5 x d

CAT6 – 8 pole				
Straight	CAT9040680	(4x(2x0.14)C)C	10.0	12.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with green-yellow earth core x = without earth core

<u>Ге</u>

Minimum bending radius for use in Energy Chains®:

12.5 x cable diameter

Colour: violet (similar to RAL 4001)

Chainflex®-TPE Energy Chains® Ethernet special cable

Delivery program

igus® Part No. Number of cores and conductor nominal cross section [mm²]

ø [mm]

Bending radius

12.5 x d

H

CAT6 - 8 pole

Cross-Over

CAT9040620 (4x(2x0.14)C)C

10.0

CAT6 – 8 pole				
Cross-Over	CAT9040660	(4x(2x0.14)C)C	10.0	12.5 x d

CAT6 – 8 pole				
Cross-Over	CAT9040700	(4x(2x0.14)C)C	10.0	12.5 x d

Initiators

Chainflex® ReadyCable®

	Cable type	Jacket	Page
Initiators CF9 - CF.INI (minimum bending	g radius 5 x d)		
	Direct line M12 x 1, straight/angled	TPE	260
	Direct line M12 x 1, straight/angled, LED	TPE	261
	Connecting cable M12 x 1, straight/angled	TPE	262
	Direct line M8 x 1, straight/angled	TPE	263
	Direct line M8 x 1, angled, LED	TPE	264
	Connecting cable M8 x 1, straight/angled	TPE	265
Initiators CF10 - CF.INI (minimum bendir	ng radius 5 x d) 360° shielded		
	Direct line M12 x 1, straight/angled	TPE	266
	Connecting cable M12 x 1, straight/angled	TPE	267
Initiators CF98 - CF.INI (minimum bendir	ng radius 4 x d)		
	Direct line M12 x 1, straight/angled	TPE	268
	Connecting cable M12 x 1, straight/angled	TPE	269
	Direct line M8 x 1, straight/angled	TPE	270
	Connecting cable M8 x 1, straight/angled	TPE	271

CF.INI

Chainflex® Sensor/actuator cables with 5xd for Energy Chains®

Direct line M12 x 1: Socket with free cable end

Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

Plastic, PP, black Metal, CuZn, gold-plated Plastic, FPM (Viton) 4-pole

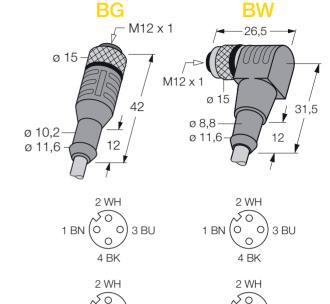
Coupling, M12 x 1

Metal, CuZn, nickel-plated

Plastic, PP, black

Number of poles Ampacity Rated voltage of a winding

Rated voltage of a winding


4 A max. 250 V

Number of poles Ampacity 5-pole (4-pole + PE) 4 A max. 60 V

Insulation resistance Contact resistance Degree of soiling $\ge 10^9 \Omega$ ≤5 m Ω 3/2

Ambient temperature of plug-type connector Protection class Mechanical service life

-40...+105 °C IP69K, in screwed state max. 100 insertion cycles

3 BU

1 BN

5 GY

000

0

4 BK

3 BU

000

(0

4 BK

5 GY

CF9.03.04.INI* (4 x 0.34)	Part No.	Number of	Cable length
Туре		poles	[m]
CF.INI-P4-M12-BG-3	MAT9043700	4	3.0
CF.INI-P4-M12-BG-5	MAT9043701	4	5.0
CF.INI-P4-M12-BG-7	MAT9043702	4	7.0
CF.INI-P4-M12-BG-10	MAT9043703	4	10.0
CF.INI-P4-M12-BG-15	MAT9049426	4	15.0
CF9.03.05.INI* (5 x 0.34)			
CF.INI-P5-M12-BG-3	MAT9043737	5	3.0
CF.INI-P5-M12-BG-5	MAT9043738	5	5.0
CF.INI-P5-M12-BG-7	MAT9043739	5	7.0
CF.INI-P5-M12-BG-10	MAT9043740	5	10.0
CF.INI-P5-M12-BG-15	MAT90410077	5	15.0
CF9.03.04.INI* (4 x 0.34)			
CF.INI-P4-M12-BW-3	MAT9043704	4	3.0
CF.INI-P4-M12-BW-5	MAT9043705	4	5.0
CF.INI-P4-M12-BW-7	MAT9043706	4	7.0
CF.INI-P4-M12-BW-10	MAT9043707	4	10.0
CF.INI-P4-M12-BW-15	MAT9049430	4	15.0
CF9.03.05.INI* (5 x 0.34)			
CF.INI-P5-M12-BW-3	MAT9043742	5	3.0
CF.INI-P5-M12-BW-5	MAT9043743	5	5.0
CF.INI-P5-M12-BW-7	MAT9043744	5	7.0

CF.INI-P5-M12-BW-10

CF.INI-P5-M12-BW-15

... no minimum order quantity

5

10.0

15.0

eplan download, configurator, PDF catalogues, lifetime ...

MAT9043745

MAT90410078

<u>년</u>

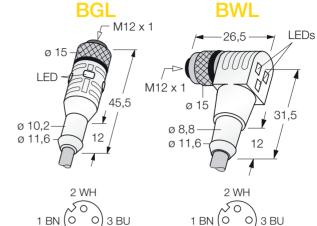
Direct line M12 x 1: Socket with LED and free cable end

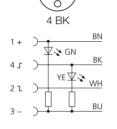
Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

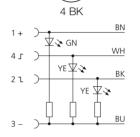
Coupling, M12 x 1 Plastic, TPU, transparent Metal, CuZn, nickel-plated Plastic, PA6GF, transparent Metal, CuZn, gold-plated Plastic, FPM (Viton)

Number of poles 4-pole **Ampacity** 4 A Rated voltage of a winding 10...30 V ≥10⁹ Ω Insulation resistance

Contact resistance ≤5 mΩ Degree of soiling 3/2


Operating voltage display Switching state display Switching function


Ambient temperature of plug-type connector Protection class Mechanical service life


LED green LED yellow/yellow pnp -40...+105°C

IP66, in screwed state

max. 100 insertion cycles

CF9.03.04.INI* (4 x 0.34)	Part No.	Number of	Cable length
Туре		poles	[m]
CF.INI-P4-M12-BGL2-3	MAT9043708	4	3.0
CF.INI-P4-M12-BGL2-5	MAT9043709	4	5.0
CF.INI-P4-M12-BGL2-7	MAT9043710	4	7.0
CF.INI-P4-M12-BGL2-10	MAT9043711	4	10.0
CF.INI-P4-M12-BGL2-15	MAT90410087	4	15.0

,				
CF.INI-P4-M12-BWL3-3	MAT9043712	4	3.0	
CF.INI-P4-M12-BWL3-5	MAT9043713	4	5.0	
CF.INI-P4-M12-BWL3-7	MAT9043714	4	7.0	
CF.INI-P4-M12-BWL3-10	MAT9043715	4	10.0	
CF.INI-P4-M12-BWL3-15	MAT90410088	4	15.0	

^{*} Technical information ▶ page 78

850 types from stock no cutting costs

Chainflex® Sensor/actuator cables with 5xd for Energy Chains®

BG

50

0

(0

1 BN

3 BU 3 BU

Connection cable M12 x 1: Socket, cable end with pin

Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

Plug-type connector Handle base Union nut/screw Contact base Contacts

Rated voltage of a winding

Ampacity Insulation resistance Contact resistance Degree of soiling

Ambient temperature of plug-type connector Protection class Mechanical service life Coupling, M12 x 1 Plastic, PP, black Metal, CuZn, nickel-plated Plastic, PP, black Metal, CuZn, gold-plated Plastic, FPM (Viton)

Connector, M12 x 1 Plastic, PP, black Metal, CuZn, nickel-plated Plastic, TPU, black Metal, CuZn, gold-plated

4-pole: max. 250 V 5-pole (4-pole+PE): max. 60 V

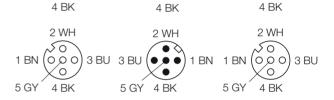
4 A≥ $10^9 \Omega$ ≤ $5 \text{ m}\Omega$

-40...+105 °C IP69K, in screwed state max. 100 insertion cycles M12 x 1 Ø 15 Ø 10,2 Ø 11,6 Ø 10,2 Ø 11,6 Ø 11,6 Ø 12 Ø 11,6 Ø 12 Ø 11,6 Ø 12 Ø 10,2 Ø 11,6 Ø 12 Ø 11,6 Ø 12 Ø 12 Ø 12 Ø 142 Ø 15 Ø 15 Ø 15 Ø 15 Ø 16 Ø 17 Ø 18

SG

BW

50


0

0

3 BU

1 BN (O

1 BN

10.0

CF9.03.04.INI* (4 x 0.34)	Part No.	Number of	Cable length
Туре		poles	[m]
CF.INI-P4-M12-BG / M12-SG-2	MAT90410312	4	2.0
CF.INI-P4-M12-BG / M12-SG-5	MAT90410313	4	5.0
CF.INI-P4-M12-BG / M12-SG-10	MAT90410314	4	10.0
CF9.03.05.INI* (5 x 0.34)			
CF.INI-P5-M12-BG / M12-SG-2	MAT90410339	5	2.0
CF.INI-P5-M12-BG / M12-SG-5	MAT90410340	5	5.0
CF.INI-P5-M12-BG / M12-SG-10	MAT90410341	5	10.0
CF9.03.04.INI* (4 x 0.34)			
CF.INI-P4-M12-BW / M12-SG-2	MAT90410315	4	2.0
CF.INI-P4-M12-BW / M12-SG-5	MAT90410316	4	5.0
CF.INI-P4-M12-BW / M12-SG-10	MAT90410317	4	10.0
CF9.03.05.INI* (5 x 0.34)			
CF.INI-P5-M12-BW / M12-SG-2	MAT90410342	5	2.0
CF.INI-P5-M12-BW / M12-SG-5	MAT90410343	5	5.0
		_	

* Technical information ▶ page 78

CF.INI-P5-M12-BW / M12-SG-10

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

MAT90410344

Tel. Fax

Direct line M8 x 1: Socket with free cable end

Plug-type connector

Handle base
Union nut/screw
Contact base
Contacts

Plastic, PP, black
Metal, CuZn, nickel-plated
Plastic, PP, black
Metal, CuZn, gold-plated
Seal

Plastic, FPM (Viton)

Number of poles 3-pole
Ampacity 4 A
Rated voltage of a winding max. 60 V

Number of poles 4-pole
Ampacity 4 A
Rated voltage of a winding max. 30 V

 $\begin{array}{ll} \mbox{Insulation resistance} & \geq 10^9 \ \Omega \\ \mbox{Contact resistance} & \leq 5 \ \mbox{m}\Omega \\ \mbox{Degree of soiling} & 3/2 \end{array}$

Ambient temperature of plug-type connector

plug-type connector -40...+105 °C
Protection class IP69K, in screwed state
Mechanical service life max. 100 insertion cycles

CF9.02.03.INI* (3 x 0.25)

BG BW

Ø 9,6

M8 x 1

Ø 9,6

ABK

4 BK

3 BU 0 0 1 BN 3 BU 0 0 1 BN

Number of Cable length

4 BK O O 2 WH 3 BU O O 1 BN

4 BK 0 0 2 WH 3 BU 0 0 1 BN

Туре		poles	[m]	
CF.INI-P3-M8-BG-3	MAT9043716	3	3.0	
CF.INI-P3-M8-BG-5	MAT9043717	3	5.0	
CF.INI-P3-M8-BG-7	MAT9043718	3	7.0	
CF.INI-P3-M8-BG-10	MAT9043719	3	10.0	
CF.INI-P3-M8-BG-15	MAT9049416	3	15.0	
CF9.03.04.INI* (4 x 0.34)				
CF.INI-P4-M8-BG-3	MAT9043728	4	3.0	
CF.INI-P4-M8-BG-5	MAT9043729	4	5.0	
CF.INI-P4-M8-BG-7	MAT9043730	4	7.0	
CF.INI-P4-M8-BG-10	MAT9043731	4	10.0	
CF.INI-P4-M8-BG-15	MAT9049466	4	15.0	
CF9.02.03.INI* (3 x 0.25)				
CF.INI-P3-M8-BW-3	MAT9043724	3	3.0	
CF.INI-P3-M8-BW-5	MAT9043725	3	5.0	
CF.INI-P3-M8-BW-7	MAT9043726	3	7.0	
CF.INI-P3-M8-BW-10	MAT9043727	3	10.0	
CF.INI-P3-M8-BW-15	MAT9049419	3	15.0	
CF9.03.04.INI* (4 x 0.34)				
CF.INI-P4-M8-BW-3	MAT9043732	4	3.0	
CF.INI-P4-M8-BW-5	MAT9043733	4	5.0	
CF.INI-P4-M8-BW-7	MAT9043734	4	7.0	
CF.INI-P4-M8-BW-10	MAT9043735	4	10.0	

Part No.

CF.INI-P4-M8-BW-15

850 types from stock no cutting costs ...

MAT9049467

15.0

CF.INI

Chainflex® Sensor/actuator cables with 5xd for Energy Chains®

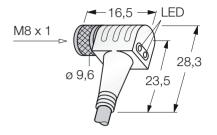
Direct line M8 x 1: Socket with LED and free cable end

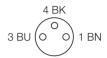
Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

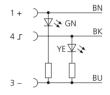
Coupling, M8 x 1 Plastic, TPU, transparent Metal, CuZn, nickel-plated Plastic, PA6GF, black Metal, CuZn, gold-plated Plastic, FPM (Viton)

Number of poles Ampacity Rated voltage of a winding

3-pole 4 A 10...30 V


Insulation resistance Contact resistance Degree of soiling ≥10° Ω ≤5 mΩ 3/2


Operating voltage display Switching state display Switching function LED green LED yellow pnp


Ambient temperature of plug-type connector Protection class Mechanical service life

-40...+105 °C IP66K, in screwed state max. 100 insertion cycles

BWL

CF9.02.03.INI* (3 x 0.25)	Part No.	Number of	Cable length
Туре		poles	[m]
CF.INI-P3-M8-BWL2-3	MAT9043720	3	3.0
CF.INI-P3-M8-BWL2-5	MAT9043721	3	5.0
CF.INI-P3-M8-BWL2-7	MAT9043722	3	7.0
CF.INI-P3-M8-BWL2-10	MAT9043723	3	10.0
CF.INI-P3-M8-BWL2-15	MAT90410196	3	15.0

^{*} Technical information ▶ page 78

Tel. Fax

Connection cable M8 x 1: Socket, cable end with pin

Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

Plug-type connector Handle base Union nut/screw Contact base Contacts

Rated voltage of a winding

Ampacity Insulation resistance Contact resistance Degree of soiling

Ambient temperature of plug-type connector Protection class Mechanical service life Coupling, M8 x 1
Plastic, PP, black

Metal, CuZn, nickel-plated Plastic, PP, black Metal, CuZn, gold-plated

Plastic, FPM (Viton)

Connector, M8 x 1 Plastic, PP, black Metal, CuZn, nickel-plated Plastic, PP, black

Plastic, PP, black Metal, CuZn, gold-plated

max. 100 insertion cycles

3-pole: max. 60 V 4-pole: max. 30 V 4 A $\geq 10^9 \Omega$ $\leq 5 \text{ m}\Omega$

3/2

3 BU \-40...+105 °C IP69K, in screwed state

4 BK

SG

2 WH

1 BN

BG

1 BN 1

4 BK 4

3 BU

3 BU (O

4 BK

BW

CF9.02.03.INI* (3 x 0.25)	Part No.	Number of	Cable length
Type		poles	[m]
CF.INI-P3-M8-BG / M8-SG-2	MAT90410324	3	2.0
CF.INI-P3-M8-BG / M8-SG-5	MAT90410325	3	5.0
CF.INI-P3-M8-BG / M8-SG-10	MAT90410326	3	10.0
CF9.03.04.INI* (4 x 0.34)			
CF.INI-P4-M8-BG / M8-SG-2	MAT90410333	4	2.0
CF.INI-P4-M8-BG / M8-SG-5	MAT90410334	4	5.0
CF.INI-P4-M8-BG / M8-SG-10	MAT90410335	4	10.0
CEO 00 02 INI* (2 v 0 05)			
CF9.02.03.INI* (3 x 0.25)			
CF.INI-P3-M8-BW / M8-SG-2	MAT90410330	3	2.0

CF9.02.03.INI* (3 x 0.25)				
CF.INI-P3-M8-BW / M8-SG-2	MAT90410330	3	2.0	
CF.INI-P3-M8-BW / M8-SG-5	MAT90410331	3	5.0	
CF.INI-P3-M8-BW / M8-SG-10	MAT90410332	3	10.0	
CF9.03.04.INI* (4 x 0.34)				
CF.INI-P4-M8-BW / M8-SG-2	MAT90410336	4	2.0	
CF.INI-P4-M8-BW / M8-SG-5	MAT90410337	4	5.0	
CF.INI-P4-M8-BW / M8-SG-10	MAT90410338	4	10.0	

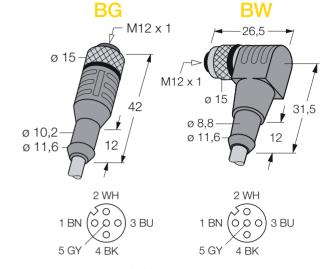
^{*} Technical information ▶ page 78

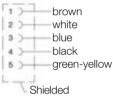
CF.INI

Chainflex® Sensor/actuator cables with 5xd for Energy Chains®

Direct line 360° shielded, M12 x 1: Socket with free cable end

Plug-type connector Handle base Union nut/screw Contact base Contacts Seal Coupling, M12 x 1 Plastic, PP, black Metal, CuZn, nickel-plated Plastic, PP, black Metal, CuZn, gold-plated Plastic, FPM (Viton)


Number of poles Ampacity Rated voltage of a winding 5-pole (4-pole + PE) 4 A max. 60 V


Insulation resistance Contact resistance Degree of soiling ≥10° Ω ≤5 mΩ 3/2

Ambient temperature of plug-type connector Protection class

Mechanical service life

-40...+105 °C IP69K, in screwed state max. 100 insertion cycles

CF10.03.05.INI* (5 x 0,34)C	Part No.	Number of	Cable length
Туре		poles	[m]
CF10.INI-P5-C-M12-BG-3	MAT90424072	5	3,0
CF10.INI-P5-C-M12-BG-5	MAT90424073	5	5,0
CF10.INI-P5-C-M12-BG-7	MAT90424074	5	7,0
CF10.INI-P5-C-M12-BG-10	MAT90424075	5	10,0
CF10.INI-P5-C-M12-BG-15	MAT90424076	5	15,0

CF10.03.05.INI* (5 x 0,34)C

CF10.INI-P5-C-M12-BW-3	MAT90424077	5	3,0
CF10.INI-P5-C-M12-BW-5	MAT90424078	5	5,0
CF10.INI-P5-C-M12-BW-7	MAT90424079	5	7,0
CF10.INI-P5-C-M12-BW-10	MAT90424080	5	10,0
CF10.INI-P5-C-M12-BW-15	MAT90424081	5	15,0

* Technical information ▶ page 82

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

0

4 BK

5 GY

CF.INI

CF10

Shainflex®

+49-2203-96 49-222

Fax <u>년</u>

+49-2203-96 49-0

Chainflex® Sensor/actuator cables with 5xd for Energy Chains®

Connection cable 360° shielded, M12 x 1: Socket, cable end with pin

Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

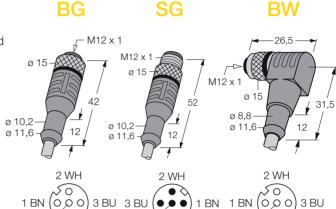
Number of poles **Ampacity** Rated voltage of a winding

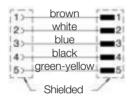
Insulation resistance Contact resistance Degree of soiling

Ambient temperature of plug-type connector Protection class Mechanical service life

Coupling, M12 x 1 Plastic, PP, black

Metal, CuZn, nickel-plated Plastic, PP, black


Metal, CuZn, gold-plated Plastic, FPM (Viton)


5-pole (4-pole + PE)

4 A max. 60 V

≥10⁹ Ω ≤5 mΩ 3/2

-40...+105°C IP69K, in screwed state max. 100 insertion cycles

4 BK

CF10.03.05.INI* (5 x 0,34)C	Part No.	Number of	Cable length
Туре		poles	[m]
CF10.INI-P5-C-M12-BG/ M12-SG-2	MAT90424082	5	2,0
CF10.INI-P5-C-M12-BG/M12-SG-5	MAT90424083	5	5,0
CF10.INI-P5-C-M12-BG/M12-SG-10	MAT90424084	5	10,0

O

4 BK

CF10.INI-P5-C-M12-BW/M12-SG-2	MAT90424085	5	2,0	
CF10.INI-P5-C-M12-BW/M12-SG-5	MAT90424086	5	5,0	
CF10.INI-P5-C-M12-BW/M12-SG-10	MAT90424087	5	10,0	

^{*} Technical information ▶ page 82

850 types from stock no cutting costs

Chainflex® Sensor/actuator cables with 4xd for Energy Chains®

Direct line M12 x 1: Socket with free cable end

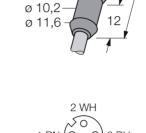
Plug-type connector Handle base Union nut/screw Contact base Contacts

Seal

Coupling, M12 x 1 Plastic, PP, black Metal, CuZn, nickel-plated Plastic, PP, black Metal, CuZn, gold-plated Plastic, FPM (Viton)

Number of poles **Ampacity** Rated voltage of a winding

4-pole 4 A max. 250 V

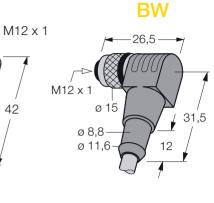

Insulation resistance Contact resistance Degree of soiling

≥10⁹ Ω ≤5 mΩ 3/2

Ambient temperature of plug-type connector

Protection class Mechanical service life -40...+105 °C

IP69K, in screwed state max. 100 insertion cycles



0

4 BK

BG

42

CF98.03.04.INI* (4 x 0.34)	Part No.	Number of	Cable length
Туре		poles	[m]
CF98.INI-P4-M12-BG-3	MAT90410235	4	3.0
CF98.INI-P4-M12-BG-5	MAT90410236	4	5.0
CF98.INI-P4-M12-BG-7	MAT90410237	4	7.0
CF98.INI-P4-M12-BG-10	MAT90410238	4	10.0
CF98.INI-P4-M12-BG-15	MAT90410239	4	15.0

CF98.03.04.INI* (4 x 0.34)

CF98.INI-P4-M12-BW-3	MAT90410240	4	3.0	
CF98.INI-P4-M12-BW-5	MAT90410241	4	5.0	
CF98.INI-P4-M12-BW-7	MAT90410242	4	7.0	
CF98.INI-P4-M12-BW-10	MAT90410243	4	10.0	
CF98.INI-P4-M12-BW-15	MAT90410244	4	15.0	

^{*} Technical information ▶ page 94

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

Tel. Fax

Connection cable M12 x 1: Socket, cable end with pin

Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

Plug-type connector Handle base Union nut/screw Contact base Contacts

Rated voltage of a winding Ampacity

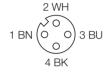
Insulation resistance Contact resistance Degree of soiling

Ambient temperature of plug-type connector Protection class Mechanical service life Coupling, M12 x 1 Plastic, PP, black Metal, CuZn, nickel-plated Plastic, TPU, black Metal, CuZn, gold-plated Plastic, FPM (Viton)

Connector, M12x1 Plastic, PP, black Metal, CuZn, nickel-plated Plastic, TPU, black Metal, CuZn, gold-plated

4-pole: max. 250V

4A≥ 10^9 Ω
≤5 mΩ 3/2


-40...+105 °C IP69K, in screwed state max. 100 insertion cycles

2 WH

CF98.03.04.INI* (4 x 0.34)	Part No.	Number of	Cable length
Type		poles	[m]
CF98.INI-P4-M12-BG / M12-SG-2	MAT90410300	4	2.0
CF98.INI-P4-M12-BG / M12-SG-5	MAT90410301	4	5.0
CF98.INI-P4-M12-BG / M12-SG-10	MAT90410302	4	10.0

CF98.INI-P4-M12-BW / M12-SG-2	MAT90410303	4	2.0	
CF98.INI-P4-M12-BW / M12-SG-5	MAT90410304	4	5.0	
CF98.INI-P4-M12-BW / M12-SG-10	MAT90410305	4	10.0	

* Technical information ▶ page 94

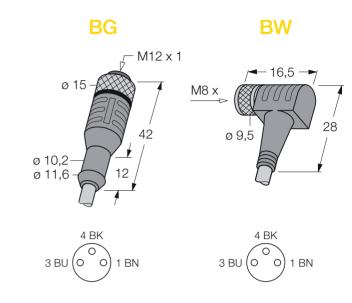
Chainflex® Sensor/actuator cables with 4xd for Energy Chains®

Direct line M8 x 1: Socket with free cable end

Plug-type connector Handle base Union nut/screw Contact base Contacts

Seal

Coupling, M8 x 1
Plastic, PP, black
Metal, CuZn, nickel-plated
Plastic, PP, black
Metal, CuZn, gold-plated
Plastic, FPM (Viton)


Number of poles 3-pole Ampacity 4 A Rated voltage of a winding max. 60 V

 $\begin{array}{ll} \mbox{Insulation resistance} & {\scriptstyle \geq} 10^9 \ \Omega \\ \mbox{Contact resistance} & {\scriptstyle \leq} 5 \ m\Omega \\ \mbox{Degree of soiling} & 3/2 \end{array}$

Ambient temperature of

plug-type connector Protection class Mechanical service life -40...+105 °C

IP69K, in screwed state max. 100 insertion cycles

CF98.02.03.INI* (3 x 0.25)	Part No.	Number of	Cable length
Туре		poles	[m]
CF98.INI-P3-M8-BG-3	MAT90410245	3	3.0
CF98.INI-P3-M8-BG-5	MAT90410246	3	5.0
CF98.INI-P3-M8-BG-7	MAT90410247	3	7.0
CF98.INI-P3-M8-BG-10	MAT90410248	3	10.0
CF98.INI-P3-M8-BG-15	MAT90410249	3	15.0

CF98.02.03.INI* (3 x 0.25)

CF98.INI-P3-M8-BW-3	MAT90410250	3	3.0
CF98.INI-P3-M8-BW-5	MAT90410251	3	5.0
CF98.INI-P3-M8-BW-7	MAT90410252	3	7.0
CF98.INI-P3-M8-BW-10	MAT90410253	3	10.0
CF98.INI-P3-M8-BW-15	MAT90410254	3	15.0

^{*} Technical information ▶ page 94

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

Connection cable M8 x 1: Socket, cable end with pin

Plug-type connector Handle base Union nut/screw Contact base Contacts Seal

Plug-type connector Handle base Union nut/screw Contact base Contacts

Rated voltage of a winding **Ampacity** Insulation resistance Contact resistance

plug-type connector Protection class Mechanical service life

Degree of soiling

Coupling, M8 x 1 Plastic, PP, black

Metal, CuZn, nickel-plated Plastic, TPU, black Metal, CuZn, gold-plated

Plastic, FPM (Viton) Connector, M8 x 1

Plastic, PP, black Metal, CuZn, nickel-plated Plastic, PP, black Metal, CuZn, gold-plated

3-pole: max. 60 V 4A ≥10⁹ Ω ≤5 mΩ 3/2

4 BK

ø 9,6

BG

34

M8 x 1

M8 x 1

ø 9,6

SG

M8 x 1

BW

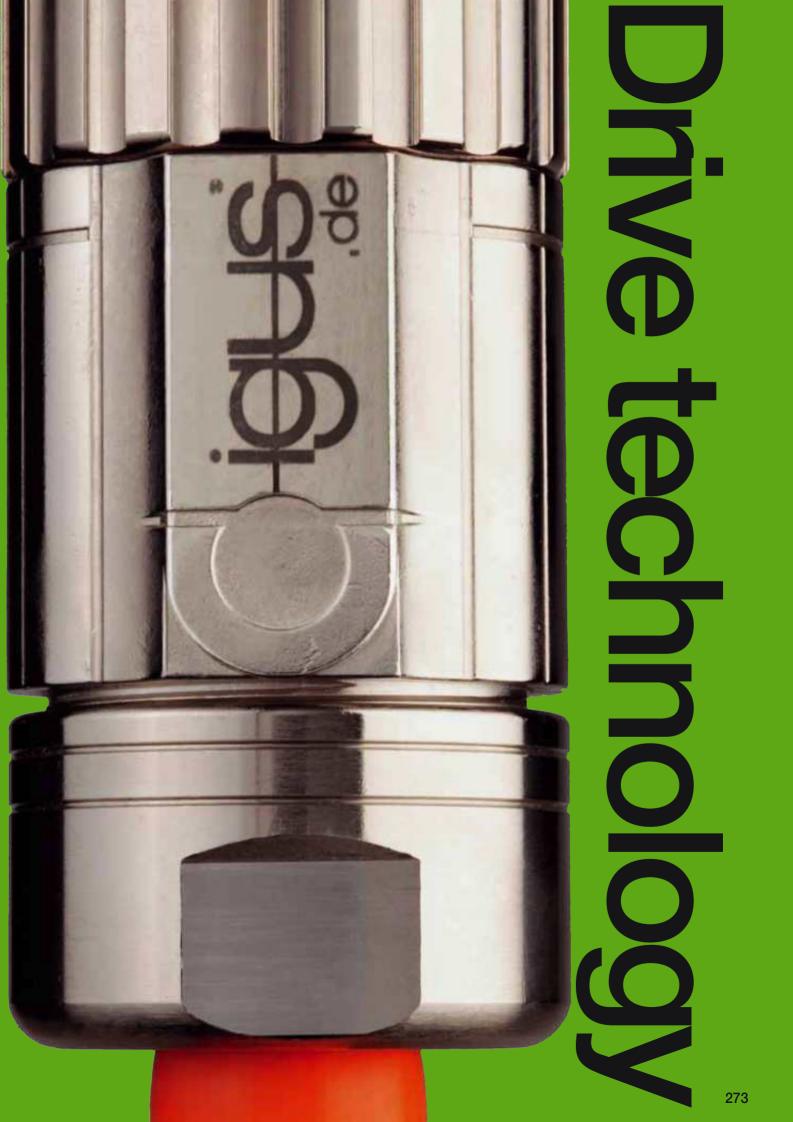
16.5 -

28

Ambient temperature of

-40...+105 °C IP69K, in screwed state max. 100 insertion cycles

CF98.02.03.INI* (3 x 0.25)	Part No.	Number of	Cable length
Туре		poles	[m]
CF98.INI-P3-M8-BG / M8-SG-2	MAT90410306	3	2.0
CF98.INI-P3-M8-BG / M8-SG-5	MAT90410307	3	5.0
CF98.INI-P3-M8-BG / M8-SG-10	MAT90410308	3	10.0



CF98.INI-P3-M8-BW / M8-SG-2	MAT90410309	3	2.0	
CF98.INI-P3-M8-BW / M8-SG-5	MAT90410310	3	5.0	
CF98.INI-P3-M8-BW / M8-SG-10	MAT90410311	3	10.0	

* Technical information ▶ page 94

850 types from stock no cutting costs

Chainflex® ReadyCable®

Ha	-		_	ᆔ
на	m	es	ĸ	≏ (0)

acc	ording to standard	Cable type	Jacket	Page
Cables for Drive Technol	logy			
	Siemens – Sele	ection for part no. and material	l	276
D m	Siemens	Servo cable	PUR/PVC	278
44.94	Siemens	Power cable	TPE/PVC	282
	Siemens	Signal cables/encoder	TPE/PVC	286
	Lenze – Select	ion for part no. and material		294
9 100	Lenze	Servo cable	PUR/PVC	296
D. M.	Lenze	Power cable	PUR/PVC	300
	Lenze	Signal cables/encoder (Resolver)	TPE/PVC	304
	Lenze	Signal cables/encoder (Encoder)	TPE/PVC	308
	Lenze	Signal cables/encoder (Feedback)	TPE/PVC	312
	Lenze	Signal cables/encoder (Decoder)	TPE/PVC	316
-	Lenze	Control cable (Fan)	TPE/PVC	320
	Rexroth - Sele	ction for part no. and material		324
	Rexroth	Servo cable	PUR/PVC	326
	Rexroth	Signal cables/encoder	TPE/PVC	334
	Fanuc - Select	tion for part no. and material		338
- CERTS	Fanuc	Servo cable	PUR	340
	Fanuc	Signal cables/encoder	TPE	344
	SEW - Selection	on for part no. and material		348
	SEW	Servo cable	PUR/PVC	350
	SEW	Power cable	TPE/PVC	354
	SEW	Signal cables/encoder	TPE/PVC	358

[&]quot;Siemens" is a registered trademark of Siemens AG, München / "Lenze" is a registered trademark of Lenze GmbH & Co KG, Extertal / "Rexroth" is a registered trademark of Bosch Rexroth AG, Lohr / "Fanuc" is a registered trademark of Fanuc Ltd., Tokyo/Yamanashi / "SEW" is a registered trademark of SEW-EURODRIVE GmbH & Co KG, Bruchsal

Chainflex ReadyCable® Harnessed

R	
7	

ac	cording to standard	Cable type	Jacket	Page
Cables for Drive Techno	ology			
	Heidenhain – S	election for part no. and mate	rial	362
	Heidenhain	Signal cables/encoder	PUR/TPE	364
	ELAU - Selection	on for part no. and material		368
	ELAU	Servo cable	PVC/PUR	370
	ELAU	Signal cables/encoder	PVC/TPE	372
	Danaher Motion	- Selection for part no. and m	naterial	374
	Danaher Motion	Signal cables/encoder	PVC/TPE	376
	Danaher Motion	Servo cable	PVC/PUR	380
	Danaher Motion	Power cable	PVC/TPE	384
	B&R – Selection	n for part no. and material		388
	B&R	Servo cable	PVC/PUR	390
	B&R	Signal cables/encoder (Resolver)	PVC/TPE	392
	B&R	Signal cables/encoder (EnDat)	PVC/TPE	394

[&]quot;Heidenhain" is a registered trademark of Dr. Johannes Heidenhain GmbH, Traunreut / "ELAU" is a registered trademark of Elektronik-Automations-AG, Marktheidenfeld / "Danaher Motion" is a registered trademark of Danaher Motion Technology LLC, Delaware

Basic cable

Chainflex® ReadyCable®

SIEMENS – Selection table according to Siemens part numbers and sheath materials. You will find your basic cable in the left column, the respective extension on the right.

Extension cable

			Extension cable			
Outer jack PVC				Outer jacket PVC	material c PUR	on page TPE
	288					
290	286	•	6FX8002-2AD04	293		289
292	288		6FX8002-2AH04	293		289
290	286	•	6FX8002-2CB54	293		289
290	286	•	6FX8002-2CA54	293		289
290	286		6FX8002-2CA34	293		289
290	286		6FX8002-2CA54	293		289
290	286	5				
	286	•	6FX8002-2CB34			289
290	287		6FX8002-2CC14	293		289
290	287		6FX8002-2CB54	293		289
290	287		6FX8002-2CB54	293		289
291	287					
291	287		6FX8002-2CF04	293		289
291	287	•	6FX8002-2CB54	293		289
291	287		6FX8002-2AD04	293		289
291	287					
291	288					
	288					
	288					
292	288					
292	288		6FX8002-2EQ14	293		289
284	282		6FX8002-5CA05	285		283
284	282	•	6FX8002-5CA15	285		283
284	282		6FX8002-5CA28	285		283
284	282		6FX8002-5CX28	285		283
284	282		6FX8002-5CA38	285		283
284	282		6FX8002-5CA48	285		283
284	282		6FX8002-5CA58	285		283
284	282		6FX8002-5CA68	285		283
284	282					
284	282					
284	282					
280	278		6FX8002-5DA05	281	279	
280	278		6FX8002-5DA15	281	279	
280	278		6FX8002-5DA28	281	279	
280	278		6FX8002-5DX28	281	279	
280	278		6FX8002-5DA38	281	279	
280	278		6FX8002-5DX38	281	279	
280	278		6FX8002-5DA48	281	279	
280	278		6FX8002-5DX48	281	279	
280	278		6FX8002-5DA58	281	279	
280	278		6FX8002-5DA68	281	279	
280	278					
280	278					
280	278					
	290 292 290 290 290 290 290 290 290 290	PVC PUR TP 290 286 292 286 290 286 290 286 290 286 290 286 290 287 290 287 290 287 291 287 291 287 291 287 291 287 291 287 291 287 291 287 291 287 291 288 282 284 284 282 284 282 284 282 284 282 284 282 284 282 284 282 284 282 284 282 284 282 284 282 284 282 280 278	290 286 ▶ 292 288 ▶ 290 286 ▶ 290 286 ▶ 290 286 ▶ 290 286 ▶ 290 286 ▶ 290 287 ▶ 290 287 ▶ 290 287 ▶ 291 287 ▶ 291 287 ▶ 291 287 ▶ 291 287 ▶ 291 287 ▶ 291 287 ▶ 291 287 ▶ 291 287 ▶ 291 287 ▶ 291 288 ≥ 288 288 ≥ 280 288 ≥ 284 282 ▶ 284 282 ▶ 284 282 ▶ 284 282 ▶ 284 282 > 284 <	PVC PUR TPE 290 286 ▶ 6FX8002-2AD04 292 288 ▶ 6FX8002-2AD04 290 286 ▶ 6FX8002-2CB54 290 286 ▶ 6FX8002-2CA54 290 286 ▶ 6FX8002-2CA34 290 286 ▶ 6FX8002-2CA54 290 286 ▶ 6FX8002-2CB34 290 287 ▶ 6FX8002-2CB34 290 287 ▶ 6FX8002-2CB54 290 287 ▶ 6FX8002-2CB54 290 287 ▶ 6FX8002-2CB54 291 287 ▶ 6FX8002-2CF04 291 287 ▶ 6FX8002-2CF04 291 287 ▶ 6FX8002-2CF04 291 287 ▶ 6FX8002-2CB54 291 287 ▶ 6FX8002-2CB4 281 288 ▶ 6FX8002-5CA5 284 282 ▶	PVC PUR TPE PVC 290 286 ▶ 6FX8002-2AD04 293 292 288 ▶ 6FX8002-2AH04 293 290 286 ▶ 6FX8002-2CB54 293 290 286 ▶ 6FX8002-2CA54 293 290 286 ▶ 6FX8002-2CA34 293 290 286 ▶ 6FX8002-2CA54 293 290 286 ▶ 6FX8002-2CA54 293 290 287 ▶ 6FX8002-2CB34 293 290 287 ▶ 6FX8002-2CB54 293 290 287 ▶ 6FX8002-2CB54 293 291 287 ▶ 6FX8002-2CB4 293 291 287 ▶ 6FX8002-2CB	PVC PUR TPE PVC PUR 290 286 ▶ 6FX8002-2AD04 293 292 288 ▶ 6FX8002-2CB54 293 290 286 ▶ 6FX8002-2CB54 293 290 286 ▶ 6FX8002-2CA54 293 290 286 ▶ 6FX8002-2CB34 293 290 287 ▶ 6FX8002-2CB54 293 290 287 ▶ 6FX8002-2CB54 293 291 287 ▶ 6FX8002-2CB54 293 291 287 ▶ 6FX8002-2CF04 293 291 287 ▶ 6FX8002-2CF04 293 291 287 ▶ 6FX8002-2CF04 293 291 288 ▶

Chainflex® ReadyCable®

SIEMENS

Chainflex® PVC cables for the woodworking industry, for example

Typical application area - PVC

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes, timber processing

Chainflex® PUR cables for the tooling machine industry, for example

Typical application area - PUR

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Chainflex® TPE cables for outdoor use, for example

Typical application area - TPE

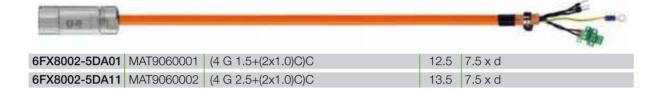
- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

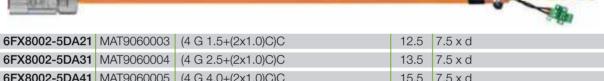
Our product engineers will be happy to advise you in your choice of application-specific cables.

Chainflex® servo cable

harnessed according to Siemens standard

Technical information


- Oil-resistant and coolant-resistant, shielded
- Notch-resistant, hydrolysis-resistant and microberesistant
- Intermediate jacket on the basis of PUR
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, 90% optical, and metal foil


7.5 x d

Nominal voltage: 600/1000 V

Chainflex® PUR servo cable: Basic cables

Siemensigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

 6FX8002-5DA31
 MAT9060004
 (4 G 2.5+(2x1.0)C)C
 13.5
 7.5 x d

 6FX8002-5DA41
 MAT9060005
 (4 G 4.0+(2x1.0)C)C
 15.5
 7.5 x d

 6FX8002-5DA51
 MAT9060006
 (4 G 6.0+(2x1.0)C)C
 17.5
 7.5 x d

 6FX8002-5DA61
 MAT9060007
 (4 G 10.0+(2x1.0)C)C
 20.5
 7.5 x d

6FX8002-5DS01	MAT9060020	(4G1.5+(2x1.0)C)C	12.5	7.5 x d
6FX8002-5DS21	MAT9060021	(4G1.5+(2x1.0)C)C	12.5	7.5 x d
6FX8002-5DS21	MAT9060022	(4G10.0+(2x1.0)C)C	20.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

6FX8002-5DA43 MAT9060010 (4 G 35.0+(2x1.5)C)C

igus

- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Temperature range (moved): -20 °C to +80 °C
- Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Oclour: orange (similar to RAL 2003)

Chainflex® PUR servo cable: Extension cables

Siemens	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

the late			-		(349)890
6FX8002-5DA05	MAT9061001	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d	
6FX8002-5DA15	MAT9061002	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d	
95 19					L) 04
6FX8002-5DA28	MAT9061003	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d	
6FX8002-5DA38	MAT9061004	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d	
6FX8002-5DA48	NANTOORLOOF	(4 G 4 0+(2×1 0)C)C	15.5	75×d	

6FX8002-5DA28 MAT906100	3 (4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
6FX8002-5DA38 MAT906100	4 (4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
6FX8002-5DA48 MAT906100	05 (4 G 4.0+(2x1.0)C)C	15.5	7.5 x d
6FX8002-5DA58 MAT906100	06 (4 G 6.0+(2x1.0)C)C	17.5	7.5 x d
6FX8002-5DA68 MAT906100	7 (4 G 10.0+(2x1.0)C)C	20.5	7.5 x d

6FX8002-5DX28	MAT9061008	(4 G 16.0+(2x1.0)C)C	24.0	7.5 x d
6FX8002-5DX38	MAT9061009	(4 G 25.0+(2x1.5)C)C	28.5	7.5 x d
6FX8002-5DX48	MAT9061010	(4 G 35.0+(2x1.5)C)C	32.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® servo cable

harnessed according to Siemens standard

Technical information

- Oil-resistant
- Flame-retardant, shielded
- Intermediate jacket on the basis of PVC
- Temperature range (moved): -5 °C to +70 °C

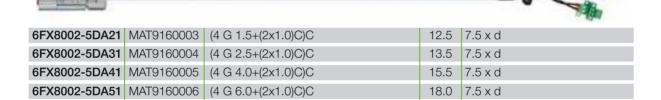
6FX8002-5DA61 MAT9160007 (4 G 10.0+(2×1.0)C)C

6FX8002-5DA43 MAT9160010 (4 G 35.0+(2x1.5)C)C

- Nominal voltage: 600/1000 V
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, 90% optical, and metal foil

22.0 7.5 x d

33.0 7.5 x d


Chainflex® PVC servo cable, oil-resistant: Basic cables

 Siemens
 igus®
 Number of cores and conductor
 Ø
 Bending

 Part No.
 Part No.
 nominal cross section [mm²]
 mm
 radius

6FX8002-5DA01	MAT9160001	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
6FX8002-5DA11	MAT9160002	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d



6FX8002-5DS01	MAT9160020	(4G1.5+(2x1.0)C)C	12.5	7.5 x d
6FX8002-5DS21	MAT9160021	(4G1.5+(2x1.0)C)C	12.5	7.5 x d
6FX8002-5DS61	MAT9160022	(4G10.0+(2x1.5)C)C	22.5	7.5 x d

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90% optical

Oclour: green (similar to RAL 6005)

Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Chainflex® PVC servo cable, oil-resistant: Extension cables

Siemens	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

to differ				13000
6FX8002-5DA05 MAT9161001	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d	
6FX8002-5DA15 MAT9161002	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d	

6FX8002-5DA28	MAT9161003	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
6FX8002-5DA38	MAT9161004	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
6FX8002-5DA48	MAT9161005	(4 G 4.0+(2x1.0)C)C	15.5	7.5 x d
6FX8002-5DA58	MAT9161006	(4 G 6.0+(2x1.0)C)C	18.0	7.5 x d
6FY8002-5DA68	MAT0161007	(A G 10 0+(2×1 0)C)C	22.0	75 × d

6FX8002-5DX28	MAT9161008	(4 G 16.0+(2x1.0)C)C	24.5	7.5 x d
6FX8002-5DX38	MAT9161009	(4 G 25.0+(2x1.5)C)C	29.5	7.5 x d
6FX8002-5DX48	MAT9161010	(4 G 35.0+(2x1.5)C)C	33.0	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® power cable

harnessed according to Siemens standard

Technical information

- Oil-resistant and coolant-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -35 °C to +90 °C
- For maximum load requirements
- Intermediate jacket on the basis of TPE
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

11.5 7.5 x d

Chainflex® TPE power cable: Basic cables

Siemens igus® Number of cores and conductor Ø Bending Part No. Part No. nominal cross section [mm²] mm radius

	ž.
And the second second	
(0.61) (0.61)	

6FX8002-5CA21	MAT9050003	(4 G 1.5)C	10.0	7.5 x d
6FX8002-5CA31	MAT9050004	(4 G 2.5)C	11.5	7.5 x d
6FX8002-5CA41	MAT9050005	(4 G 4.0)C	13.0	7.5 x d
6FX8002-5CA51	MAT9050006	(4 G 6.0)C	15.0	7.5 x d
6FX8002-5CA61	MAT9050007	(4 G 10.0)C	20.0	7.5 x d

6FX8002-5CA23 MAT9050008 (4 G 16.0)C 22.0 7.5 x d

6FX8002-5CS01	MAT9050020	(4 G 1.5)C	9.5	7.5 x d
6FX8002-5CS21	MAT9050021	(4 G 1.5)C	9.5	7.5 x d
6FX8002-5CS31	MAT9050022	(4 G 2.5)C	11.0	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Nominal voltage: 600/1000 V

Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Colour: black (similar to RAL 9005)

Chainflex® TPE power cable: Extension cables

Siemens igus® Number of cores and conductor Bending Ø Part No. Part No. nominal cross section [mm²] radius mm

ge (m.)		_		Chicago
6FX8002-5CA05 MAT9051001	(4 G 1.5)C	10.0	7.5 x d	
6FX8002-5CA15 MAT9051002	(4 G 2.5)C	11.5	7.5 x d	

6FX8002-5CA28	MAT9051003	(4 G 1.5)C	10.0	7.5 x d
6FX8002-5CA38	MAT9051004	(4 G 2.5)C	11.5	7.5 x d
6FX8002-5CA48	MAT9051005	(4 G 4.0)C	13.0	7.5 x d
6FX8002-5CA58	MAT9051006	(4 G 6.0)C	15.0	7.5 x d
6FX8002-5CA68	MAT9051007	(4 G 10.0)C	20.0	7.5 x d

6FX8002-5CX28 MAT9051008 (4 G 16.0)C 22.0 7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® power cable

harnessed according to Siemens standard

Technical information

- Oil-resistant
- Flame-retardant
- Shielded
- Intermediate jacket on the basis of PVC
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Temperature range (moved): -5 °C to +70 °C

Chainflex® PVC power cable, oil-resistant: Basic cables

 Siemens
 igus®
 Number of cores and conductor
 Ø
 Bending

 Part No.
 part No.
 nominal cross section [mm²]
 mm
 radius

6FX8002-5CA21	MAT9150003	(4 G 1.5)C	12.5	7.5 x d
6FX8002-5CA31	MAT9150004	(4 G 2.5)C	15.0	7.5 x d
6FX8002-5CA41	MAT9150005	(4 G 4.0)C	16.0	7.5 x d
6FX8002-5CA51	MAT9150006	(4 G 6.0)C	19.0	7.5 x d
6FX8002-5CA61	MAT9150007	(4 G 10.0)C	24.0	7.5 x d

6FX8002-5CA23 MAT9150008 (4 G 16.0)C 27.0 7.5 x d

6FX8002-5CS01 MAT915003	20 (4 G 1.5)C	10.5	7.5 x d
6FX8002-5CS21 MAT915003	21 (4 G 1.5)C	10.5	7.5 x d
6FX8002-5CS31 MAT915002	22 (4 G 2.5)C	12.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

- Nominal voltage: 600/1000 V
- Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Oclour: anthracite-gray (similar to RAL 7016)

Chainflex® PVC power cable, oil-resistant: Extension cables

Siemens	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

04 (10)		_		The Part of
6FX8002-5CA05 MAT9151001	(4 G 1.5)C	12.5	7.5 x d	
6FX8002-5CA15 MAT9151002	(4 G 2.5)C	15.0	7.5 x d	
•				

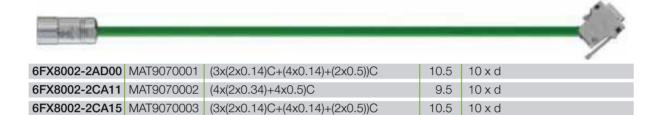
6FX8002-5CA28	MAT9151003	(4 G 1.5)C	12.5	7.5 x d
6FX8002-5CA38	MAT9151004	(4 G 2.5)C	15.0	7.5 x d
6FX8002-5CA48	MAT9151005	(4 G 4.0)C	16.0	7.5 x d
6FX8002-5CA58	MAT9151006	(4 G 6.0)C	19.0	7.5 x d
6FX8002-5CA68	ΜΔΤΩ151007	(4 G 10 0)C	24.0	75 × d

6FX8002-5CX28 MAT9151008	(4 G 16.0)C	27.0	7.5 x c
---------------------------------	-------------	------	---------

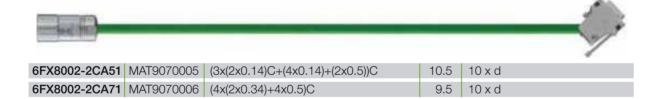
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® signal cable

harnessed according to Siemens standard


Technical information

- Oil-resistant and coolant-resistant, shielded
- Thin-walled, halogen-free
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Temperature range (moved): -35 °C to +100 °C


Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

 Siemens
 igus®
 Number of cores and conductor
 Ø
 Bending

 Part No.
 Part No.
 nominal cross section [mm²]
 mm
 radius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. **G** = with earthed conductor green-yellow **x** = without earthed conductor

<u>--</u>

Nominal voltage: 30 V

Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Siemens igus® Number of cores and conductor Bending Ø Part No. Part No. nominal cross section [mm²] radius mm

			_	
6FX8002-2CB51	MAT9070008	(4x(2x0.34)+4x0.5)C	9.5	10 x d
6FX8002-2CC11	MAT9070009	(4x(2x0.34)+4x0.5)C	9.5	10 x d
6FX8002-2CD01	MAT9070010	(4x(2x0.34)+4x0.5)C	9.5	10 x d

			-
6FX8002-2CF01 MAT907002	1 (3x(2x0.14)C+(4x0.14)+(2x0.5))C	10.5	10 x d
6FX8002-2CF02 MAT907001	1 (3x(2x0.14)C+(4x0.14)+(2x0.5))C	10.5	10 x d
6FX8002-2CG00 MAT907001	2 (4x(2x0.34)+4x0.5)C	9.5	10 x d
6FX8002-2CH00 MAT907001	3 (3×(2×0 14)C±(4×0 14)±(2×0 5))C	10.5	10 v d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® signal cable

harnessed according to Siemens standard

Technical information

- Oil-resistant and coolant-resistant, shielded
- Thin-walled, halogen-free
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Intermediate jacket on the basis of TPE

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Siemens Number of cores and conductor igus® Ø Bending Part No. nominal cross section [mm²] Part No. mm radius 6FX8002-2CL00 | MAT9070015 | (3x(2x0.14)C+(2x0.5C))C 10.5 | 10 x d **6FX8002-2EQ00** MAT9070016 | (3x(2x0.14)C+2x0.5+4x0.14+4x0.23)C **6FX8002-2EQ10** MAT9070017 (3x(2x0.14)C+2x0.5+4x0.14+4x0.23)C **6FX8002-2AH00** MAT9070018 (4x(2x0.34)+4x0.5)C **6FX8002-2DC10** MAT9070030 | (2x(2x0.15)+2x0.38)C 12 x d **6FX8002-2DC20** MAT9070031 (2x(2x0.15)+2x0.38)C 7.5 12 x d **6FX8002-1DC00** MAT9070032 (2x(2x0.15)+2x0.38)C 7.5 12 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

■ Temperature range (moved): -35 °C to +100 °C

Nominal voltage: 30 V

Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: Extension cables

Siemens	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

6FX8002-2AD04	MAT9071001	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	10.5	10 x d
6FX8002-2CB54	MAT9071002	(4x(2x0.34)+4x0.5)C	9.5	10 x d
6FX8002-2CA54	MAT9071003	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	10.5	10 x d
6FX8002-2CA34	MAT9071004	(3x(2x0.14)C+2x0.5+4x0.14+4x0.23)C	11.5	10 x d

		Name of Street
6EV9009 2CD24 MAT0071007 (10v0 25)C	00 10vd	

6FX8002-2CC14	MAT9071009	(4x(2x0.34)+4x0.5)C	9.5	10 x d
6FX8002-2CF04	MAT9071011	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	10.5	10 x d
6FX8002-2EQ14	MAT9071017	(3x(2x0.14)C+2x0.5+4x0.14+4x0.23)C	11.5	10 x d
6FX8002-2AH04	MAT9071018	(4x(2x0,34)+4x0,5)C	9.5	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

SIEMENS

Chainflex® signal cable

harnessed according to Siemens standard

Technical information

- Oil-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -5 °C to +70 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90% optical
- Nominal voltage: 30 V

Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

Siemensigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

6FX8002-2AD00	MAT9170001	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	9.0	10 x d
6FX8002-2CA11	MAT9170002	(4x(2x0.34)+4x0.5)C	9.0	10 x d
6FX8002-2CA15	MAT9170003	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	9.0	10 x d

6FX8002-2CA51	MAT9170005	(3x(2x0.14)C+2x0.5+4x0.14+4x0.23)C	9.5	10 x d
6FX8002-2CA71	MAT9170006	(4x(2x0.34)+4x0.5)C	9.0	10 x d
6FX8002-2CB51	MAT9170008	(4x(2x0.34)+4x0.5)C	9.0	10 x d
6FX8002-2CC11	MAT9170009	(4x(2x0.34)+4x0.5)C	9.0	10 x d
6FX8002-2CD01	MAT9170010	(4x(2x0,34)+4x0,5)C	9.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Minimum bending radius for use in Energy Chains®:

10 x cable diameter

Colour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

Siemens igus® Number of cores and conductor Bending Ø Part No. Part No. nominal cross section [mm²] radius mm

	200
- (m), 10)	 -/-

6FX8002-2CF01	MAT9170021	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	9.0	10 x d
6FX8002-2CF02	MAT9170011	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	9.0	10 x d
6FX8002-2CG00	MAT9170012	(4x(2x0.34)+4x0.5)C	9.0	10 x d

	3/
6EY8002-2CH00 MAT0170013 (32/020 14)C+220 5+420 14+420 23)C 0 5 10 2 d	

6FX8002-2CK00 MAT9170014	(3x(2x0.14)C+(2x0.5C))C	9.0	10 x d
6FX8002-2CL00 MAT9170015	(3x(2x0.14)C+(2x0.5C))C	9.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® signal cable

harnessed according to Siemens standard

Technical information

- Oil-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -5 °C to +70 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90%
- Nominal voltage: 30 V

Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

Siemens Part No.

igus® Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm

Bending radius

6FX8002-2EQ00 MAT9170016 (3x(2x0.14)C+(4x0.14)+(2x0.5)+(4x0.23))C

6FX8002-2EQ10 MAT9170017 (3x(2x0.14)C+(4x0.14)+(2x0.5)+(4x0.23))C

6FX8002-2AH00 MAT9170018 (4x(2x0.34)+4x0.5)C

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Minimum bending radius for use in Energy Chains®:

10 x cable diameter

Colour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant: Extension cables

Siemens	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

Heal (FILE)			=	California de
6FX8002-2AD04	MAT9171001	(3x(2x0.14)C+(4x0.14)+(2x0.5)+(4x0.23))C	9.5	10 x d
6FX8002-2CB54	MAT9171002	(4x(2x0.34)+4x0.5)C	9.0	10 x d
6FX8002-2CA54	MAT9171003	(3x(2x0.14)C+(4x0.14)+(2x0.5)+(4x0.23))C	9.5	10 x d
6FX8002-2CA34	MAT9171004	(3x(2x0.14)C+(4x0.14)+(2x0.5)+(4x0.23))C	9.5	10 x d
6FX8002-2CC14	MAT9171009	(4x(2x0.34)+4x0.5)C	9.0	10 x d
6FX8002-2CF04	MAT9171011	(3x(2x0.14)C+(4x0.14)+(2x0.5)+(4x0.23))C	9.5	10 x d
6FX8002-2EQ14	MAT9171017	(3x(2x0.14)C+(4x0.14)+(2x0.5)+(4x0.23))C	9.5	10 x d
6FX8002-2AH04	MAT9171018	(4x(2x0.34)+4x0.5)C	9.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Chainflex® ReadyCable®

LENZE – Selection table according to Lenze part numbers and sheath materials. You will find your basic cable in the left column, the respective extension on the right.

Basic cable	Outer jacl PVC	ket materia PUR	al on page TPE		Linking cable Ou	uter jacket PVC	material o	n pag TPE
EWLExxxGM-T	310		308	•	EWLExxxZMST	311		309
EWLLxxxGMS	322		320	•	EWLLxxxZM	323		32-
EWLMxxxGMS-015C	298/302	296/300		•	EWLMxxxZM-015C	299/303	297/301	
EWLMxxxGMS-025	298/302	296/300		•	EWLMxxxZM-025	299/303	297/301	
EWLRxxxGM-T	306		304	•	EWLRxxxZMST	307		305
EYF0018AxxxxA00S03	313		315					
EYF0018AxxxxA00W02	312		314					
EYF0018AxxxxF02S03	312		314	•	EYF0019VxxxxF02G02	313		318
EYF0018AxxxxF02W02	312		314	•	EYF0019VxxxxF02G02	313		315
EYF0019VxxxxA00G02	312		314	•	EYF0019VxxxxF02G02	313		315
EYF0020AxxxxA00S04	312		314					
EYF0020AxxxxA00S05	313		315					
EYF0020AxxxxF01S04	312		314	•	EYF0020VxxxxF01G01	313		315
EYF0020AxxxxF01S05	312		314	•	EYF0020VxxxxF01G01	313		315
EYF0020VxxxxA00G01	312		314	•	EYF0020VxxxxF01G01	313		315
EYF0021AxxxxA00S03	313		315					
EYF0021AxxxxF03S03	312		314	•	EYF0022VxxxxF03G03	313		315
EYF0022VxxxxA00G03	312		314	•	EYF0022VxxxxF03G03	313		315
EYL002AxxxxL01A00	322		320	•	EYL002VxxxxL01J01	323		32
EYL002AxxxxL02A00	322		320	•	EYL002VxxxxL02J02	323		32 ⁻
EYL002VxxxxA00J01	322		320	•	EYL002VxxxxL01J01	323		32 ⁻
EYL002VxxxxA00J02	322		320	•	EYL002VxxxxL02J02	323		32-
EYP0010AxxxxA00P01	298	296		•	EYP0010AxxxxM01P01	299	297	
EYP0010AxxxxM01A00	298	296		•	EYP0010AxxxxM01P01	299	297	
EYP0011AxxxxA00P01	298	296		•	EYP0011AxxxxM01P01	299	297	
EYP0011AxxxxM01A00	298	296		•	EYP0011AxxxxM01P01	299	297	
EYP0012AxxxxA00P01	298	296		•	EYP0012AxxxxM01P01	299	297	
EYP0012AxxxxA00P02	298	296		•	EYP0012AxxxxM02P02	299	297	
EYP0012AxxxxM01A00	298	296		•	EYP0012AxxxxM01P01	299	297	
EYP0012AxxxxM02A00	298	296		•	EYP0012AxxxxM02P02	299	297	
EYP0013AxxxxA00P02	298	296		•	EYP0013AxxxxM02P02	299	297	
EYP0013AxxxxM02A00	298	296		•	EYP0013AxxxxM02P02	299	297	
EYP0014AxxxxA00P03	298	296		•	EYP0014AxxxxM03P03	299	297	
EYP0014AxxxxM03A00	298	296		•	EYP0014AxxxxM03P03	299	297	
EYP0015AxxxxA00P03	298	296		•	EYP0015AxxxxM03P03	299	297	
EYP0015AxxxxM03A00	298	296		•	EYP0015AxxxxM03P03	299	297	
EYP0016AxxxxA00P03	298	296			EYP0016AxxxxM03P03	299	297	
EYP0016AxxxxM03A00	298	296		•	EYP0016AxxxxM03P03	299	297	
Terminal box connection						200		
EWLExxxGX-T	311		309					
EWLRxxxGX-T	307		305					
Connecting cable	007		000					
EYD0017AxxxxW01S01	316		318					
EYD0017AXXXXW01S01 EYD0017AXXXXW01S02	316		318					
EYD0017AXXXXW01S02	316		318					
EYD0017AxxxxW03S01	316		318					
	010		010					

Chainflex® ReadyCable®

LENZE

Chainflex® PVC cables for the woodworking industry, for example

Typical application area - PVC

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to
 100 m
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes, timber processing

Chainflex® PUR cables for the tooling machine industry, for example

Typical application area - PUR

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Chainflex® TPE cables for outdoor use, for example

Typical application area - TPE

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Our product engineers will be happy to advise you in your choice of application-specific cables.

Chainflex® servo cable

harnessed according to Lenze standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Notch-resistant, hydrolysis-resistant and microberesistant
- Intermediate jacket on the basis of PUR
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx.
 70% linear, 90% optical, and metal foil

Chainflex® PUR servo cable: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

04 10				*
EWLMxxxGMS-015C	MAT9120001	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EWLMxxxGMS-025	MAT9120002	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
EYP0010AxxxxM01A00	MAT9120050	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EYP0011AxxxxM01A00	MAT9120051	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EYP0012AxxxxM01A00	MAT9120052	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
EYP0012AxxxxM02A00	MAT9120053	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
EYP0013AxxxxM02A00	MAT9120054	(4 G 4.0+(2x1.0)C)C	15.5	7.5 x d
EYP0014AxxxxM03A00	MAT9120055	(4 G 6.0+(2x1.0)C)C	17.5	7.5 x d
EYP0015AxxxxM03A00	MAT9120056	(4 G 10.0+(2x1.0)C)C	20.5	7.5 x d
EYP0016AxxxxM03A00	MAT9120057	(4 G 16.0+(2x1.0)C)C	23.0	7.5 x d
EYP0012AxxxxA00P02	MAT9120058	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
EYP0013AxxxxA00P02	MAT9120059	(4 G 4.0+(2x1.0)C)C	15.5	7.5 x d
EYP0014AxxxxA00P03	MAT9120060	(4 G 6.0+(2x1.0)C)C	20.5	7.5 x d
EYP0015AxxxxA00P03	MAT9120061	(4 G 10.0+(2x1.0)C)C	20.5	7.5 x d
EYP0016AxxxxA00P03	MAT9120062	(4 G 16.0+(2x1.0)C)C	23.0	7.5 x d
EYP0010AxxxxA00P01	MAT9120063	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EYP0011AxxxxA00P01	MAT9120064	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EYP0012AxxxxA00P01	MAT9120065	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

^{*} igus® gladly pre-harnesses the cable end according to your technical guidelines.

 Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90% optical

● Temperature range (moved): -20 °C to +80 °C

- Nominal voltage: 600/1000 V
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Oclour: orange (similar to RAL 2003)

Chainflex® PUR servo cable: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

0.6				SHEDWINE.
EWLMxxxZM-015C	MAT9120006	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EWLMxxxZM-025	MAT9120007	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
EYP0012AxxxxM02P02	MAT9120066	(4 G 2.5+(2x1)C)C	13.5	7.5 x d
EYP0013AxxxxM02P02	MAT9120067	(4 G 4.0+(2x1)C)C	15.5	7.5 x d
EYP0014AxxxxM03P03	MAT9120068	(4 G 6.0+(2x1)C)C	17.5	7.5 x d
EYP0015AxxxxM03P03	MAT9120069	(4 G 10.0+(2x1)C)C	20.5	7.5 x d
EYP0016AxxxxM03P03	MAT9120070	(4 G 16.0+(2x1)C)C	23.0	7.5 x d
EYP0010AxxxxM01P01	MAT9120071	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0011AxxxxM01P01	MAT9120072	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0012AxxxxM01P01	MAT9120073	(4 G 2.5+(2x1)C)C	13.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Chainflex® servo cable

harnessed according to Lenze standard

Technical information

- Oil-resistant
- Flame-retardant
- Shielded
- Intermediate jacket on the basis of PVC
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx.
 70% linear, 90% optical, and metal foil
- Temperature range (moved): -5 °C to +70 °C

Chainflex® PVC servo cable, oil-resistant: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

94 1				*
EWLMxxxGMS-015C	MAT9130001	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EWLMxxxGMS-025	MAT9130002	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
EYP0010AxxxxM01A00	MAT9130050	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0011AxxxxM01A00	MAT9130051	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0012AxxxxM01A00	MAT9130052	(4 G 2.5+(2x1)C)C	13.5	7.5 x d
EYP0012AxxxxM02A00	MAT9130053	(4 G 2.5+(2x1)C)C	13.5	7.5 x d
EYP0013AxxxxM02A00	MAT9130054	(4 G 4.0+(2x1)C)C	15.5	7.5 x d
EYP0014AxxxxM03A00	MAT9130055	(4 G 6.0+(2x1)C)C	18.0	7.5 x d
EYP0015AxxxxM03A00	MAT9130056	(4 G 10.0+(2x1)C)C	22.0	7.5 x d
EYP0016AxxxxM03A00	MAT9130057	(4 G 16.0+(2x1)C)C	24.5	7.5 x d
EYP0012AxxxxA00P02	MAT9130058	(4 G 2.5+(2x1)C)C	13.5	7.5 x d
EYP0013AxxxxA00P02	MAT9130059	(4 G 4.0+(2x1)C)C	15.5	7.5 x d
EYP0014AxxxxA00P03	MAT9130060	(4 G 6.0+(2x1)C)C	22.0	7.5 x d
EYP0015AxxxxA00P03	MAT9130061	(4 G 10.0+(2x1)C)C	22.0	7.5 x d
EYP0016AxxxxA00P03	MAT9130062	(4 G 16.0+(2x1)C)C	24.5	7.5 x d
EYP0010AxxxxA00P01	MAT9130063	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0011AxxxxA00P01	MAT9130064	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0012AxxxxA00P01	MAT9130065	(4 G 2.5+(2x1)C)C	13.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

^{*} igus® gladly pre-harnesses the cable end according to your technical guidelines.

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Nominal voltage: 600/1000 V

- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Oclour: green (similar to RAL 6005)

Chainflex® PVC servo cable, oil-resistant: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

(0.4 h)				The Paris of the P
EWLMxxxZM-015C	MAT9130006	(4 G 1.5+(2x1.0)C)C	12.5	7.5 x d
EWLMxxxZM-025	MAT9130007	(4 G 2.5+(2x1.0)C)C	13.5	7.5 x d
EYP0012AxxxxM02P02	MAT9130066	(4 G 2.5+(2x1)C)C	13.5	7.5 x d
EYP0013AxxxxM02P02	MAT9130067	(4 G 4.0+(2x1)C)C	15.5	7.5 x d
EYP0014AxxxxM03P03	MAT9130068	(4 G 6.0+(2x1)C)C	18.0	7.5 x d
EYP0015AxxxxM03P03	MAT9130069	(4 G 10.0+(2x1)C)C	22.0	7.5 x d
EYP0016AxxxxM03P03	MAT9130070	(4 G 16.0+(2x1)C)C	24.5	7.5 x d
EYP0010AxxxxM01P01	MAT9130071	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0011AxxxxM01P01	MAT9130072	(4 G 1.5+(2x1)C)C	12.5	7.5 x d
EYP0012AxxxxM01P01	MAT9130073	(4 G 2.5+(2x1)C)C	13.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® power cable

harnessed according to Lenze standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded

EWLMxxxGMS-025

- Notch-resistant, hydrolysis-resistant and microberesistant
- Intermediate jacket on the basis of PUR
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, 90% optical, and metal foil

12.0 7.5 x d

Chainflex® PUR power cable: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

MAT9120012 (4 G 2.5)C

^{*} igus® gladly pre-harnesses the cable end according to your technical guidelines.

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90% optical

■ Temperature range (moved): -20 °C to +80 °C

- Nominal voltage: 600/1000 V
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Oclour: orange (similar to RAL 2003)

Chainflex® PUR power cable: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

ten (mg					NAME OF TAXABLE PARTY.
EWLMxxxZM-015C	MAT9120016	(4 G 1.5)C	10.5	7.5 x d	
EWLMxxxZM-025	MAT9120017	(4 G 2.5)C	12.0	7.5 x d	

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

PV

Chainflex® power cable

harnessed according to Lenze standard

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Intermediate jacket on the basis of PVC
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Temperature range (moved): -5 °C to +70 °C

Chainflex® PVC power cable, oil-resistant: Basic cables

Lenzeigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

EWLMxxxGMS-015C	MAT9130011	(4 G 1.5)C	12.5	7.5 x d
EWLMxxxGMS-025	MAT9130012	(4 G 2.5)C	15.0	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* igus® gladly pre-harnesses the cable end according to your technical guidelines.

Nominal voltage: 600/1000 V

Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Oclour: anthracite-gray (similar to RAL 7016)

Chainflex® PVC power cable, oil-resistant: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

DATE OF THE PARTY					DESCRIPTION OF THE PERSON OF T
EWLMxxxZM-015C	MAT9130016	(4 G 1.5)C	12.5	7.5 x d	
EWLMxxxZM-025	MAT9130017	(4 G 2.5)C	15.0	7.5 x d	

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® resolver cable

harnessed according to Lenze standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Thin-walled, halogen-free
- Temperature range (moved): -35 °C to +100 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: **Linking cables**

Lenze Number of cores and conductor igus® Ø Bending Part No. Part No. nominal cross section [mm²] mm radius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® TPE signal/encoder cable, oil-resistant: **Terminal box connection cable**

Lenze igus® Number of cores and conductor Ø Bending Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

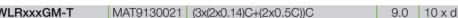
* igus® gladly pre-harnesses the cable end according to your technical guidelines.

LENZE

Chainflex® resolver cable

harnessed according to Lenze standard

Technical information


- oil-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -5 °C to +70 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

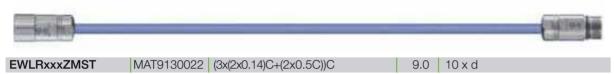
Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

 Lenze
 igus®
 Number of cores and conductor
 Ø
 Bending

 Part No.
 Part No.
 nominal cross section [mm²]
 mm
 radius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

<u>--</u>

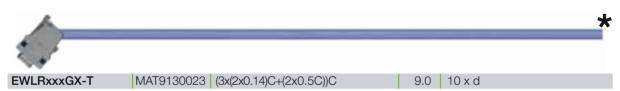

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Colour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant: **Linking cables**

Lenze Number of cores and conductor igus® Ø Bending Part No. Part No. nominal cross section [mm²] mm radius



Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PVC signal/encoder cable, oil-resistant: Terminal box connection cable

Lenze igus® Number of cores and conductor Ø Bending Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* igus® gladly pre-harnesses the cable end according to your technical guidelines.

Chainflex® encoder cable

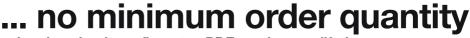
harnessed according to Lenze standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Thin-walled, halogen-free
- Temperature range (moved): -35 °C to +100 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

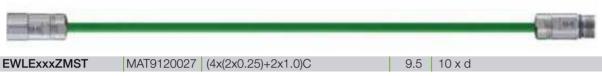
Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

 Lenze
 igus®
 Number of cores and conductor
 Ø
 Bending


 Part No.
 Part No.
 nominal cross section [mm²]
 mm
 radius

MAT9120026 | (4x(2x0.25)+2x1.0)C | 9.5 | 10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

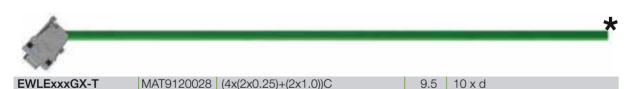

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: **Linking cables**

Lenze Number of cores and conductor igus® Ø Bending Part No. Part No. nominal cross section [mm²] mm radius



Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

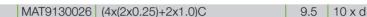
Chainflex® TPE signal/encoder cable, oil-resistant: **Terminal box connection cable**

Lenze igus® Number of cores and conductor Ø Bending Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* igus® gladly pre-harnesses the cable end according to your technical guidelines.

Chainflex® encoder cable


harnessed according to Lenze standard

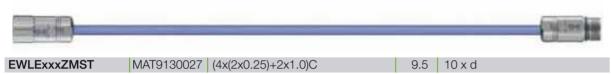
Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -5 °C to +70 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

PVC

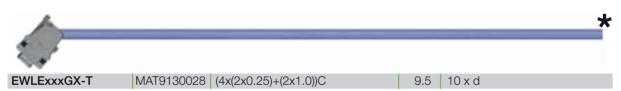

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Colour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant: **Linking cables**

Lenze Number of cores and conductor igus® Ø Bending Part No. Part No. nominal cross section [mm²] mm radius



Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PVC signal/encoder cable, oil-resistant: Terminal box connection cable

Lenze igus® Number of cores and conductor Ø Bending Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* igus® gladly pre-harnesses the cable end according to your technical guidelines.

Chainflex® feedback cable

harnessed according to Lenze standard

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -5 °C to +70 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

11.0

10 x d

Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

EYF0022VxxxxA00G03 MAT9130082 3(2x0.14)C+(4x0.14)C+2(2x0.5)C

EYF0020AxxxxF01S05 MAT9130090 3(2x0.14)C+(3x0.14)C

					500
EYF0021AxxxxF03S03	MAT9130086	3(2x0.14)C+(4x0.14)C+2(2x0.5)C	11.0	10 x d	
EYF0018AxxxxF02S03	MAT9130088	4(2x0.14)C+(2x1.0)C	11.0	10 x d	

- Marie				
EYF0018AxxxxF02W02	MAT9130087	4(2x0.14)C+(2x1.0)C	11.0	10 x d
EYF0020AxxxxF01S04	MAT9130089	3(2x0.14)C+(3x0.14)C	9.5	10 x d

				*
EYF0018AxxxxA00W02	MAT9130091	4(2x0.14)C+(2x1.0)C	11.0	10 x d
EYF0020AxxxxA00S04	MAT9130092	3(2x0.14)C+(3x0.14)C	9.5	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* igus® gladly pre-harnesses the cable end according to your technical guidelines.

igus®

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Oclour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

EYF0020AxxxxA00S05	MAT9130093	3(2x0.14)C+(3x0.14)C	9.5	10 x d
EYF0021AxxxxA00S03	MAT9130094	3(2x0.14)C+(4x0.14)C+2(2x0.5)C	11.0	10 x d
EYF0018AxxxxA00S03	MAT9130095	4(2x0.14)C+(2x1.0)C	11.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Chainflex® PVC signal/encoder cable, oil-resistant: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

os m				16,08
EYF0020VxxxxF01G01	MAT9130083	3(2x0.14)C+(3x0.14)C	9.5	10 x d
EYF0019VxxxxF02G02	MAT9130084	4(2x0.14)C+(2x1.0)C	11.0	10 x d
EYF0022VxxxxF03G03	MAT9130085	3(2x0.14)C+(4x0.14)C+2(2x0.5)C	11.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

^{*} igus® gladly pre-harnesses the cable end according to your technical guidelines.

G = with earthed conductor green-yellow x = without earthed conductor

ENZE

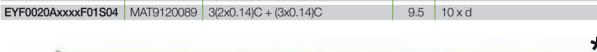
Chainflex® feedback cable

harnessed according to Lenze standard

Technical information


- Oil-resistant and coolant-resistant
- Shielded
- Thin-walled, halogen-free
- Temperature range (moved): -35 °C to +100 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables


Lenzeigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

					Carlo
EYF0022VxxxxA00G03	MAT9120082	3(2x0.14)C + (4x0.14)C + 2(2x0.5)C	12.0	10 x d	
ETF0019VXXXXAU0G02	WAT9120061	4(2x0.14)0 + (2x1.0)0	11.0	10 X U	

EYF0018AxxxxA00W02	MAT9120091	4(2x0.14)C + (2x1.0)C	11.0	10 x d
EYF0020AxxxxA00S04	MAT9120092	3(2x0.14)C + (3x0.14)C	9.5	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* igus® gladly pre-harnesses the cable end according to your technical guidelines.

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Oclour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

EYF0020AxxxxA00S05	MAT9120093	3(2x0.14)C + (3x0.14)C	9.5	10 x d
EYF0021AxxxxA00S03	MAT9120094	3(2x0.14)C + (4x0.14)C + 2(2x0.5)C	12.0	10 x d
EYF0018AxxxxA00S03	MAT9120095	4(2x0.14)C + (2x1.0)C	11.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Chainflex® TPE signal/encoder cable, oil-resistant: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

			_	2000
EYF0020VxxxxF01G01	MAT9120083	3(2x0.14)C + (3x0.14)C	9.5	10 x d
EYF0019VxxxxF02G02	MAT9120084	4(2x0.14)C + (2x1.0)C	11.0	10 x d
EYF0022VxxxxF03G03	MAT9120085	3(2x0.14)C + (4x0.14)C + 2(2x0.5)C	12.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

^{*} igus® gladly pre-harnesses the cable end according to your technical guidelines.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® decoder cable

harnessed according to Lenze standard

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- **Temperature range (moved):** $-5 \,^{\circ}\text{C}$ to $+70 \,^{\circ}\text{C}$
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® PVC signal/encoder cable, oil-resistant: Connection cables

Lenze Number of cores and conductor Bending Part No. Part No. nominal cross section [mm²] mm radius


EYD0017AxxxxW01S01 MAT9130100 3(2x0.14)C+(3x0.14)C

EYD0017AxxxxW01S02 MAT9130101 3(2x0.14)C+(3x0.14)C

EYD0017AxxxxW03S01 MAT9130102 3(2x0.14)C+(3x0.14)C

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits

Decoder **PVC**

> for Drive Technology Chainflex® Systems

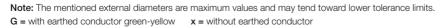
+49-2203-96 49-222 Tel. +49-2203-96 49-0 Fax

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Oclour: gray (similar to RAL 7001)

Chainflex® decoder cable


harnessed according to Lenze standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Thin-walled, halogen-free
- Temperature range (moved): -35 °C to +100 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® TPE signal/encoder cable, oil-resistant: Connection cables

Lenze Number of cores and conductor Bending Part No. Part No. nominal cross section [mm²] mm radius **EYD0017AxxxxW01S01** MAT9120100 3(2x0.14)C + (3x0.14)C **EYD0017AxxxxW01S02** MAT9120101 3(2x0.14)C + (3x0.14)C **EYD0017AxxxxW03S01** MAT9120102 3(2x0.14)C + (3x0.14)C **EYD0017AxxxxW03S02** MAT9120103 3(2x0.14)C + (3x0.14)C

Decoder TPE

for Drive Technology Chainflex® Systems

Fax 0 22 03-96 49-222 Tel. 0 22 03-96 49-0

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Oclour: green (similar to RAL 6018)

Chainflex® fan cable

harnessed according to Lenze standard

Technical information

- Oil-resistant and coolant-resistant
- PVC-free/halogen-free
- For maximum load requirements
- Temperature range (moved): -35 °C to +100 °C
- Nominal voltage: 300/500 V
- Minimum bending radius for use in Energy

Chains®: 5 x cable diameter

Colour: dark-blue (similar to RAL 5011)

Chainflex® TPE control cable: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

0.0				*
EWLLxxxGMS	MAT9120031	3 G 1.0	6.0	5 x d
EYL002AxxxxL01A00	MAT9120040	5 G 1.0	7.0	5 x d
EYL002AxxxxL02A00	MAT9120041	5 G 1.0	7.0	5 x d
EYL002VxxxxA00J01	MAT9120042	5 G 1.0	7.0	5 x d
EYL002VxxxxA00J02	MAT9120043	5 G 1.0	7.0	5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

^{*} igus® gladly pre-harnesses the cable end according to your technical guidelines.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® TPE control cable: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

oe in				Charles State
EWLLxxxZM	MAT9120032	3 G 1.0	6.0	5 x d
EYL002VxxxxL01J01	MAT9120044	5 G 1.0	7.0	5 x d
EYL002VxxxxL02J02	MAT9120045	5 G 1.0	7.0	5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® fan cable

harnessed according to Lenze standard

Technical information

- Oil-resistant
- Flame-retardant
- Temperature range (moved): -5 °C to +70 °C
- Nominal voltage: 300/500 V

Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Oclour: green (similar to RAL 6005)

Chainflex® PVC control cable, oil-resistant: Basic cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

0.9				*
EWLLxxxGMS	MAT9130031	3 G 1.0	7.0	7.5 x d
EYL002AxxxxL01A00	MAT9130040	5 G 1.0	8.5	7.5 x d
EYL002AxxxxL02A00	MAT9130041	5 G 1.0	8.5	7.5 x d
EYL002VxxxxA00J01	MAT9130042	5 G 1.0	8.5	7.5 x d
EYL002VxxxxA00J02	MAT9130043	5 G 1.0	8.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

^{*} igus® gladly pre-harnesses the cable end according to your technical guidelines.

Chainflex® PVC control cable, oil-resistant: Linking cables

Lenze	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

10-2 Hg				100	
EWLLxxxZM	MAT9130032	3 G 1.0	7.0	7.5 x d	
EYL002VxxxxL01J01	MAT9130044	5 G 1.0	8.5	7.5 x d	
EYL002VxxxxL02J02	MAT9130045	5 G 1.0	8.5	7.5 x d	

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® ReadyCable®

REXROTH - Selection table according to Rexroth part numbers and sheath materials. You will find your basic cable in the left column, the respective extension on the right.

Basic cable	O-4	ot made	ol on no	Connection cable wi			\D
	Outer jack PVC	et materia PUR	al on page TPE		Outer jacket PVC	material o	on page TPE
KG0001	330	326					
KG0011	330	326					
KG0021	330	326					
KG0041	330	326					
KG0061	330	326					
KG0081	330	326	•	► IKG0089	331	327	
KG0101	330	326					
KG0121	330	326					
KG0161	330	326		► IKG0168	331	327	
KG0331	330	326					
KG0332	330	326					
KG4009	330	326		► IKG4006	328	327	
KG4017	330	326			331	327	
KG4018	330	326					
KG4020	330	326					
KG4055	330	326					
KG4060	330	326					
KG4067	330	326					
KG4070	330	326					
KG4087	330	326					
KG4090	330	326					
KG4100	330	326					
KG4107	330	326					
KG4119	330	326					
KG4150	330	326		► IKG4141	331	327	
KG4155	330	326		INGTITI	001	021	
KG4164	330	326					
KG4167	330	326		► IKG4161	331	327	
KG4186	330	326		ING4101	331	321	
KG4200	330	326					
KG4204	330	326	224				
KS0230	336		334				
KS0232	336		334	IVCOOFF			005
KS0251			334				335
KS0253			334	► IKS0255			335
KS0262	0.2.2		334		0.57		000
KS0301	336		334	► IKS0303	337		335
KS0315	336		334				
KS0374	336		334				
KS4002	336		334				
KS4020	336		334				
KS4042	336		334	IKS4376	337		335
KS4103	336		334	IKS4151 / IKS 4153	337		335
KS4142	336		334				
KS4314	336		334		337		335
KS4374	336		334	► IKS4376	337		335
KS4375	336		334				

Chainflex® ReadyCable®

REXROTH – Selection table according to Rexroth part numbers and sheath materials. You will find your basic cable in the left column, the respective extension on the right.

Basic cable					Connection cable	with adapter p	lug	
	Outer jack	et materi	al on page	•		Outer jacke		n page
	PVC	PUR	TPE			PVC	PUR	TPE
IKS4384	336		334					
RKG4200	308		306	>	RKG4201	335		337
RKL4301	332	328		>	RKL4304	333	329	
RKL4302	332	328		>	RKL4305	333	329	
RKL4303	332	328		>	RKL4305	333	329	
RKL4306	332	328		>	RKL4311	333	329	
RKL4307	332	328		>	RKL4311	333	329	
RKL4308	332	328		>	RKL4312	333	329	
RKL4309	332	328		>	RKL4312	333	329	
RKL4310	332	328		>	RKL4312	333	329	
RKL4313	332	328		>	RKL4316	333	329	
RKL4314	332	328		>	RKL4316	333	329	
RKL4315	332	328		>	RKL4316	333	329	
RKL4317	332	328		>	RKL4319	333	329	
RKL4318	332	328		>	RKL4319	333	329	
RKL4325	332	328						
RKL4327	332	328						
RKL4329	332	328						

Chainflex® PVC cables for the woodworking industry, for example **Typical application area – PVC**

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes, timber processing

Chainflex® PUR cables for the tooling machine industry, for example **Typical application area – PUR**

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Chainflex $^{\circ}$ TPE cables for outdoor use, for example

Typical application area – TPE

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Our product engineers will be happy to advise you in your choice of application-specific cables.

Chainflex® power cable

harnessed according to Rexroth standard

Technical information

- Oil-resistant and coolant-resistant, shielded
- Notch-resistant, hydrolysis-resistant and microberesistant
- Intermediate jacket on the basis of PUR

IKG0001

IKG0011

IKG0021

■ Temperature range (moved): -20 °C to +80 °C

13.5 7.5 x d

160 75 v d

13.5

7.5 x d

Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, 90% optical, and metal foil

Chainflex® PUR servo cable: **Basic cables**

Rexroth Number of cores and conductor igus® Bending Part No. Part No. nominal cross section [mm²] mm radius Image exemplary.

MAT9090022 (4G1.0+2x(2x0.75)C)C

MAT9090023 (4G1.0+2x(2x0.75)C)C

MATQQQQQQ4 (AG2 5 | 2×(2×1 5)C)C

IKG0021	MAT9090024	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
IKG0041	MAT9090017	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
IKG0061	MAT9090018	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d
IKG0081	MAT9090030	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG0101	MAT9090025	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG0121	MAT9090019	(4G10.0+2x(2x1.5)C)C	23.5	7.5 x d
IKG0161	MAT9090063	(4G25.0+2x(2x1.5)C)C	30.0	7.5 x d
IKG0331	MAT9090014	(4 G 0.75+(2x0.5)C)C	11.5	7.5 x d
IKG0332	MAT9090015	(4 G 0.75+(2x0.5)C)C	11.5	7.5 x d
IKG4009	MAT9090001	(4 G 1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4017	MAT9090002	(4 G 1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4018	MAT9090003	(4 G 1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4020	MAT9090004	(4 G 1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4055	MAT9090005	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4060	MAT9090006	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4067	MAT9090007	(4 G 2.5+2x(2x1.5)C)C	16.0	7.5 x d
IKG4070	MAT9090008	(4 G 2.5+2x(2x1.5)C)C	16.0	7.5 x d
IKG4087	MAT9090009	(4 G 4.0+2x(2x1.5)C)C	18.0	7.5 x d
IKG4090	MAT9090010	(4 G 4.0+2x(2x1.5)C)C	18.0	7.5 x d
IKG4100	MAT9090020	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4107	MAT9090011	(4 G 6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG4119	MAT9090027	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4150	MAT9090012	(4 G 6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG4155	MAT9090028	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG4164	MAT9090035	(4G10.0+2x(2x1.5)C)C	23.5	7.5 x d
IKG4167	MAT9090013	(4 G 10.0+2x(2x1.5)C)C	23.5	7.5 x d
IKG4186	MAT9090021	(4G16.0+2x(2x1.5)C)C	26.0	7.5 x d
IKG4200	MAT9090032	(4G16.0+2x(2x1.5)C)C	26.0	7.5 x d
IKG4204	MAT9090052	(4G25.0+2x(2x1.5)C)C	30.0	7.5 x d
ALL TO US A CONTRACTOR				

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Nominal voltage: 600/1000 V

Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Oclour: orange (similar to RAL 2003)

Chainflex® PUR servo cable: Connection cables with adapter plugs

Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

		Image exemplary.		
IKG0089	MAT9091005	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG0168	MAT9091006	(4G25.0+2x(2x1.5)C)C	30.0	7.5 x d
IKG4006	MAT9091001	(4 G 1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4016	MAT9091002	(4 G 1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4141	MAT9091003	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG4161	MAT9091004	(4G10.0+2x(2x1.5)C)C	23.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

harnessed according to Rexroth standard

Technical information

- Oil-resistant and coolant-resistant, shielded
- Notch-resistant, hydrolysis-resistant and microberesistant
- Intermediate jacket on the basis of PUR
- Temperature range (moved): -20 °C to +80 °C

18.0 7.5 x d

19.5 7.5 x d

14.5 7.5 x d

18.0 7.5 x d

23.5 7.5 x d

7.5 x d

19.5

Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, 90% optical, and metal foil

Chainflex® PUR servo cable: **Basic cables**

Rexroth Part No.	igus® Part No.	Number of cores and conductor nominal cross section [mm²]	ø mm	Bending radius
		Image exemplary.		
RKL4301	MAT9090037	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4302	MAT9090026	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
RKL4303	MAT9090029	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
RKL4306	MAT9090040	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4307	MAT9090041	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4308	MAT9090033	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4309	MAT9090042	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4310	MAT9090043	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4313	MAT9090062	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d
RKL4314	MAT9090060	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

(4G4.0+2x(2x1.5)C)C

(4G6.0+2x(2x1.5)C)C

(4G6.0+2x(2x1.5)C)C

(4G1.5+2x(2x0.75)C)C

(4G4.0+2x(2x1.5)C)C

(4G10.0+2x(2x1.5)C)C

G = with earthed conductor green-yellow x = without earthed conductor

MAT9090059

MAT9090061

MAT9090047

MAT9090049

MAT9090050

MAT9090051

RKL4315

RKL4317

RKL4318

RKL4325

RKL4327

RKL4329

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Nominal voltage: 600/1000 V

Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Colour: orange (similar to RAL 2003)

Chainflex® PUR servo cable: Connection cables with adapter plugs

Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

7		Image exemplary.		
RKL4304	MAT9091007	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4305	MAT9091008	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
RKL4311	MAT9091009	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4312	MAT9091010	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4316	MAT9091011	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d
RKL4319	MAT9091012	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Chainflex® power cable

harnessed according to Rexroth standard

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Intermediate jacket on the basis of PVC
- Temperature range (moved): -5 °C to +70 °C
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, 90% optical, and metal foil

Chainflex® PVC servo cable, oil-resistant: **Basic cables**

Rexroth Number of cores and conductor igus® Bending Part No. Part No. nominal cross section [mm²] mm radius

100 101		Image exemplary.		
	l 			l=
IKG0001	MAT9190022	, , ,		7.5 x d
IKG0011	MAT9190023	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG0021	MAT9190024	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
IKG0041	MAT9190017	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
IKG0061	MAT9190018	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d
IKG0081	MAT9190030	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG0101	MAT9190025	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG0121	MAT9190019	(4G10.0+2x(2x1.5)C)C	23.5	7.5 x d
IKG0161	MAT9190063	(4G25.0+2x(2x1.5)C)C	30.0	7.5 x d
IKG0331	MAT9190014	(4 G 0.75+(2x0.5)C)C	11.0	7.5 x d
IKG0332	MAT9190015	(4 G 0.75+(2x0.5)C)C	11.0	7.5 x d
IKG4009	MAT9190001	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4017	MAT9190002	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4018	MAT9190003	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4020	MAT9190004	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4055	MAT9190005	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4060	MAT9190006	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4067	MAT9190007	(4 G 2.5+2x(2x1.5)C)C	16.5	7.5 x d
IKG4070	MAT9190008	(4 G 2.5+2x(2x1.5)C)C	16.5	7.5 x d
IKG4087	MAT9190009	(4 G 4.0+2x(2x1.5)C)C	18.5	7.5 x d
IKG4090	MAT9190010	(4 G 4.0+2x(2x1.5)C)C	18.5	7.5 x d
IKG4100	MAT9190020	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4107	MAT9190011	(4 G 6.0+2x(2x1.5)C)C	20.5	7.5 x d
IKG4119	MAT9190027	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
IKG4150	MAT9190012	(4 G 6.0+2x(2x1.5)C)C	20.5	7.5 x d
IKG4155	MAT9190028	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG4164	MAT9190035	(4G10.0+2x(2x1.5)C)C	23.5	7.5 x d
IKG4167	MAT9190013	(4 G 10.0+2x(2x1.5)C)C	24.0	7.5 x d
IKG4186	MAT9190021	(4G16.0+2x(2x1.5)C)C	26.0	7.5 x d
IKG4200	MAT9190032	(4G16.0+2x(2x1.5)C)C	26.0	7.5 x d
IKG4204	MAT9190052	(4G25.0+2x(2x1.5)C)C	30.0	7.5 x d
Note: The month and a terms		mum values and may tand toward lower telerar		

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

<u>Ге</u>

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Nominal voltage: 600/1000 V

Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter

Colour: green (similar to RAL 6005)

Chainflex® PVC servo cable, oil-resistant: Connection cables with adapter plugs

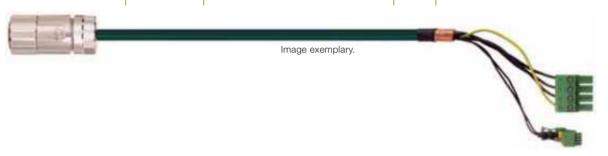
Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

-		Image exemplary.		
IKG0089	MAT9191005	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG0168	MAT9191006	(4G25.0+2x(2x1.5)C)C	30.0	7.5 x d
IKG4006	MAT9191001	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4016	MAT9191002	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
IKG4141	MAT9191003	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
IKG4161	MAT9191004	(4G10.0+2x(2x1.5)C)C	23.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

850 types from stock no cutting costs

Chainflex® power cable


harnessed according to Rexroth standard

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Intermediate jacket on the basis of PVC
- Temperature range (moved): -5 °C to +70 °C
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, approx. 90% optical, and metal foil

Chainflex® PVC servo cable, oil-resistant: Basic cables

Rexrothigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

RKL4301	MAT9190037	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4302	MAT9190026	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
RKL4303	MAT9190029	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
RKL4306	MAT9190040	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4307	MAT9190041	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4308	MAT9190033	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4309	MAT9190042	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4310	MAT9190043	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4313	MAT9190062	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d
RKL4314	MAT9190060	(4G4.0+2x(2x1.5)C)C	18.8	7.5 x d
RKL4315	MAT9190059	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d
RKL4317	MAT9190061	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
RKL4318	MAT9190047	(4G6.0+2x(2x1.5)C)C	19.5	7.5 x d
RKL4325	MAT9190049	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4327	MAT9190050	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d
RKL4329	MAT9190051	(4G10.0+2x(2x1.5)C)C	23.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

<u>Ге</u>

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Nominal voltage: 600/1000 V

RKL4319

- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Oclour: green (similar to RAL 6005)

Chainflex® PVC servo cable, oil-resistant: Connection cables with adapter plugs

Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

		lmage exemplary.		
RKL4304	MAT9191007	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4305	MAT9191008	(4G1.0+2x(2x0.75)C)C	13.5	7.5 x d
RKL4311	MAT9191009	(4G1.5+2x(2x0.75)C)C	14.5	7.5 x d
RKL4312	MAT9191010	(4G2.5+2x(2x1.5)C)C	16.0	7.5 x d
RKL4316	MAT9191011	(4G4.0+2x(2x1.5)C)C	18.0	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

(4G6.0+2x(2x1.5)C)C

Chainflex® encoder cable

harnessed according to Rexroth standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Thin-walled, halogen-free
- Temperature range (moved): -35 °C to +100 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

		Image exemplary.		
IKS0230	MAT9100008	(2x(2x0.25)+2x0.5)C	7.0	10 x d
IKS0232	MAT9100009	(2x(2x0.25)+2x0.5)C	7.0	10 x d
IKS0251	MAT9100014*	(12x0.5)C	11.5	10 x d
IKS0262	MAT9100016*	(12x0.5)C	11.5	10 x d
IKS0301	MAT9100015	(4x(2x0.25)+2x1.0)C	9.5	10 x d
IKS0315	MAT9100020	(4x(2x0.25)+2x1.0)C	9.5	10 x d
IKS0374	MAT9100011	(4x(2x0.25)+2x1.0)C	9.5	10 x d
IKS4002	MAT9100010	(3x0.25+3x(2x0.25)C+2x1.0)C	9.0	10 x d
IKS4020	MAT9100006	(4x2x0.14+4x1.0+(4x0.14)C)C	9.0	10 x d
IKS4042	MAT9100017	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4103	MAT9100001	(4x(2x0.25)+2x0.5)C	9.5	10 x d
IKS4142	MAT9100007	(4x2x0.14+4x1.0+(4x0.14)C)C	9.0	10 x d
IKS4314	MAT9100004	(4x(2x0.25)+(2x1.0))C	9.5	10 x d
IKS4374	MAT9100002	(4x(2x0.25)+2x0.5)C	9.5	10 x d
IKS4375	MAT9100003	(4x(2x0.25)+2x0.5)C	9.5	10 x d
IKS4384	MAT9100005	(3x0.25+3x(2x0.25)C+2x1.0)C	9.0	10 x d

			The state of
	Image exemplary.		19
RKG4200	MAT9100013 (4x(2x0.25)+2x0.5)C	9.5 10 x d	

^{*} without DESINA

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

<u>Ге</u>

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: Connection cables with adapter plugs

Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

		Image exemplary.			
IKS0255	MAT9100018	(12x0.5)C	11.5	10 x d	
IKS0303	MAT9100019*	(4x(2x0.25)+2x1.0)C	9.5	10 x d	
IKS4065	MAT9101001	(4x(2x0.25)+2x0.5)C	9.5	10 x d	
IKS4151	MAT9101002	(4x(2x0.25)+2x0.5)C	9.5	10 x d	
IKS4153	MAT9101003	(4x(2x0.25)+2x0.5)C	9.5	10 x d	
IKS4376	MAT9101004	(4x(2x0.25)+2x0.5)C	9.5	10 x d	
IKS4322	MAT9101005	(4x(2x0.25)+2x0.5)C	9.5	10 x d	

^{*} without DESINA

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

REXBOTE

Chainflex® encoder cable

harnessed according to Rexroth standard

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -5 °C to +70 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® PVC signal/encoder cable, oil-resistant: Basic cables

Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

		Image exemplary.		
IKS0230	MAT9110008	(2x(2x0.25)+2x0.5)C	7.0	10 x d
IKS0232	MAT9110009	(2x(2x0.25)+2x0.5)C	7.0	10 x d
IKS0301	MAT9110015	(4x(2x0.25)+2x1.0)C	9.5	10 x d
IKS0315	MAT9110020	(4x(2x0.25)+2x1.0)C	9.5	10 x d
IKS0374	MAT9110011	(4x(2x0.25)+2x1.0)C	9.5	10 x d
IKS4002	MAT9110010	(3x0.25+3x(2x0.25)C+2x1.0)C	9.0	10 x d
IKS4020	MAT9110006	(4x2x0.14+4x1.0+(4x0.14)C)C	9.0	10 x d
IKS4042	MAT9110017	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4103	MAT9110001	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4142	MAT9110007	(4x2x0.14+4x1.0+(4x0.14)C)C	9.0	10 x d
IKS4314	MAT9110004	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4374	MAT9110002	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4375	MAT9110003	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4384	MAT9110005	(3x0.25+3x(2x0.25)C+2x1.0)C	9.0	10 x d

		_==	To the last
	Image exemplary.		9
RKG4200	MAT9110013 (4x(2x0.25)+2x0.5)C	9.5 10 x d	

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

Minimum bending radius for use in Energy

Chains®: 10 x cable diameter

Colour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant: Connection cables with adapter plugs

Rexroth	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

		Image exemplary.		
IKS0303	MAT9110019	(4x(2x0.25)+2x1.0)C	9.5	10 x d
IKS4065	MAT9111001	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4151	MAT9111002	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4153	MAT9111003	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4376	MAT9111004	(4x(2x0.25)+2x0.5)C	9.0	10 x d
IKS4322	MAT9111005	(4x(2x0.25)+2x0.5)C	9.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® ReadyCable®

FANUC - Selection table according to Fanuc part numbers and sheath materials.

Basic cable - Prer	ket materi PUR	al on page TPE	9	Basic cable - Econo	omy Line Outer jacket PVC	material o PUR	n page TPE
LX660-4077-T296		340	>	LX660-4077-T296			340
LX660-4077-T297		340	•	LX660-4077-T297			340
LX660-4077-T302		340	•	LX660-4077-T302			340
LX660-4077-T303		340	•	LX660-4077-T303			340
LX660-4077-T319		340	•	LX660-4077-T319			341
LX660-8077-T261	341		•	LX660-8077-T261		341	
LX660-8077-T264	341		•	LX660-8077-T264		341	
LX660-8077-T265	341		•	LX660-8077-T265		342	
LX660-8077-T266	342		•	LX660-8077-T266		342	
LX660-8077-T267	342		•	LX660-8077-T267		342	
LX660-8077-T270	342		•	LX660-8077-T270		342	
LX660-8077-T271	342		•	LX660-8077-T271		342	
LX660-8077-T272	343		•	LX660-8077-T272		343	
LX660-8077-T273	343		•	LX660-8077-T273		343	
LX660-8077-T291	343		•	LX660-8077-T291		343	
LX660-8077-T292	344		•	LX660-8077-T292		344	
LX660-8077-T293	344		•	LX660-8077-T293		344	
LX660-8077-T296	346		•	LX660-8077-T296		345	
LX660-8077-T298	346		•	LX660-8077-T298		346	
LX660-8077-T300	347		•	LX660-8077-T300		346	

Premium Line

Energy Chain® cable for maximum stressing capacity, for unsupported and gliding applications exceeding 100 m distance of travel.

Economy Line

Energy Chain® cable for light and medium stressing capacity, preferred for unsupported applications.

Chainflex® ReadyCable®

FANUC

Chainflex® PVC cables for the woodworking industry, for example

Typical application area - PVC

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes, timber processing

Chainflex® PUR cables for the tooling machine industry, for example

Typical application area - PUR

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Chainflex® TPE cables for outdoor use, for example

Typical application area - TPE

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Our product engineers will be happy to advise you in your choice of application-specific cables.

Chainflex® power cable Premium

harnessed according to Fanuc standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Notch-resistant, hydrolysis-resistant and microberesistant
- Intermediate jacket on the basis of PUR
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx.
 70% linear, 90% optical, and metal foil

Chainflex® PUR servo cable: Basic cables

Fanuc Part No.	igus® Part No.	Number of cores and conductor nominal cross section [mm²]	ø mm	Bending radius
pe-				
LX660-8077-T261	MAT9210061	(4 G 1.5)C	10.5	7.5 x d
LX660-8077-T264	MAT9210064	(4 G 2.5)C	12.0	7.5 x d
LX660-8077-T266	MAT9210066	,	12.0	7.5 x d
LX660-8077-T265	MAT9210065	,	12.0	7.5 x d
LX660-8077-T267	MAT9210067	(4 G 2.5)C	12.0	7.5 x d
				-4
LX660-8077-T270*	MAT9210070	,	15.5	7.5 x d
LX660-8077-T272	MAT9210072	(4 G 10.0)C	20.5	7.5 x d
199				
LX660-8077-T271*	MAT9210071	(4 G 4.0)C	15.5	7.5 x d
LX660-8077-T273	MAT9210073	(4 G 10.0)C	20.5	7.5 x d

^{*} Delivery time upon inquiry

<u>le</u>

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90% optical

■ Temperature range (moved): -20 °C to +80 °C

- Nominal voltage: 600/1000 V
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Oclour: orange (similar to RAL 2003)

Chainflex® PUR servo cable: Basic cables

Fanuc	igus®	Number of cores and conductor	Ø	Bending	
Part No.	Part No.	nominal cross section [mm²]	mm	radius	
					P 04
56					
€ D					
LX660-8077-T291	MAT9210091	(4 G 2.5)C	12.0	7.5 x d	
LX660-8077-T293*	MAT9210091		15.5	7.5 x d	
LX000-8077-1293	IVIA19210093	(4 G 4.0)O	10.0	7.5 X U	
					July 0-2
					1945
LX660-8077-T292*	MAT9210092	(4 G 4.0)C	15.5	7.5 x d	
		,			
945					
LX660-8077-T296	MAT9210096	(4 G 2.5)C	12.0	7.5 x d	
					June
9-1 (0 111)					
LX660-8077-T298*	MAT9210098	(4 G 4.0)C	15.5	7.5 x d	
					THE PERSON NAMED IN
LX660-8077-T300	MAT9210300	(4 G 2 5)C	12.0	7.5 x d	
	•	imum values and may tend toward lower tolera			

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* Delivery time upon inquiry

Chainflex® power cable Economy

harnessed according to Fanuc standard

Technical information

- oil-resistant
- Shielded
- Halogen-free
- Temperature range (moved): -20 °C to +80 °C
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, approx. 80% optical
- Nominal voltage: 600/1000 V

Chainflex® PUR servo cable: Basic cables

Fanuc Part No.	igus® Part No.	Number of cores and conductor nominal cross section [mm²]	ø mm	Bending radius
pe			_	
LX660-8077-T261	MAT9200061	(4 G 1.5)C	8.5	10 x d
LX660-8077-T264	MAT9200064	,	10.5	10 x d
LX660-8077-T266	MAT9200066	(4 G 2.5)C	10.5	10 x d
LX660-8077-T265	MAT9200065	,	10.5	10 x d
LX660-8077-T267	MAT9200067	(4 G 2.5)C	10.5	10 x d
LX660-8077-T270*	MAT9200070	(4 G 4.0)C	12.0	10 x d
LX660-8077-T272	MAT9200072	(4 G 10.0)C	17.5	10 x d
LX660-8077-T271*	MAT9200071	(4 G 4.0)C	12.0	10 x d
LX660-8077-T273	MAT9200073	(4 G 10.0)C	17.5	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

^{*} Delivery time upon inquiry

<u>le</u>

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 80% optical

Oclour: orange (similar to RAL 2003)

- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Especially for freely suspended travel distances

Chainflex® PUR servo cable: Basic cables

Fanuc	igus®	Number of cores and conductor	Ø	Bending	
Part No.	Part No.	nominal cross section [mm²]	mm	radius	
THE CO.					ha 0.6
- 0					
LX660-8077-T291	MAT9200091	(4 G 2.5)C	10.5	10 x d	
LX660-8077-T293*	MAT9200093	(4 G 4.0)C	12.0	10 x d	
					THE RESERVE OF THE PERSON NAMED IN
			_		pr 3 075
LX660-8077-T292*	MAT9200092	(4 G 4.0)C	12.0	10 x d	
DE INC			_		
LX660-8077-T296	MAT9200096	(4 G 2.5)C	10.5	10 x d	
- CHICATO					
LX660-8077-T298*	MAT9200098	(4 C 4 0)C	15.5	10 x d	
LX000-0077-1290	IVIA19200096	(4 G 4.0)C	10.0	10 X U	
				_	THE RESIDENCE AND RES
LX660-8077-T300	MAT9200300	(4 G 2.5)C	12.0	10 x d	
N . T	1.00				

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

* Delivery time upon inquiry

ANDC

Chainflex® signal cable Premium

harnessed according to Fanuc standard

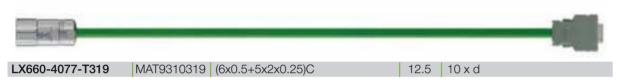
Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Thin-walled, halogen-free
- Temperature range (moved): -35 °C to +100 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Fanuc Part No.	igus® Number of cores and conductor Ø Bending Part No. nominal cross section [mm²] mm radius	
LX660-4077-T296	MAT9310296 (5x0.5+1x2x0.25)C 8.5 10 x d	
LX660-4077-T297	MAT9310297 (5x0.5+1x2x0.25)C 8.5 10 x d	
LX660-4077-T302	MAT9310302 ((6x0.5)+5x(2x0.25))C	34 95
£X000-4077-1302	12.5 10 x d	4 200
LX660-4077-T303	MAT9310303 ((6x0.5)+5x(2x0.25))C	

<u>Ге</u>


Chains®: 10 x cable diameter

Minimum bending radius for use in Energy

Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Fanuc igus® Number of cores and conductor Bending Ø Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

FANUC

Chainflex® signal cable Economy

harnessed according to Fanuc standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Thin-walled
- Temperature range (moved): -35 °C to +100 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 80% optical
- Nominal voltage: 30 V

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Fanuc Part No.	igus® Part No.	Number of cores and conductor nominal cross section [mm²]	ø mm	Bending radius	
LX660-4077-T296	MAT9300296	(5x0.5+1x2x0.25)C	7.5	12 x d	-100
LX660-4077-T297	MAT9300297	(5x0.5+1x2x0.25)C	7.5	12 x d	- Control of
LX660-4077-T302	MAT9300302	((6x0.5)+5x(2x0.25))C	9.6	12 x d	
LX660-4077-T303	MAT9300303	((6x0.5)+5x(2x0.25))C	9.6	12 x d	

<u>Ге</u>

Minimum bending radius for use in Energy

Chains®: 12 x cable diameter

- Colour: green (similar to RAL 6018)
- Especially for freely suspended travel distances

Chainflex® TPE signal/encoder cable, oil-resistant: Basic cables

Fanuc igus® Number of cores and conductor Bending Ø Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® ReadyCable®

SEW – Selection table according to SEW part numbers and sheath materials. You will find your basic cable in the left column, the respective extension on the right.

Direct line					Extension cable				
	Outer jack			Э		Out	ter jacket		
	PVC	PUR	TPE				PVC	PUR	TPE
0590 477 3	357		355	•	0590 361 0		357		355
1332 455 1	360		358	>	199 540 5		361		359
1332 486 1	353	351		•	0593 650 0		353	351	
1332 743 7	360		358	•	199 541 3		361		359
198 930 8	360		358						
199 180 9	356		354	•	199 550 2		356		354
199 182 5	356		354	•	199 552 9		356		354
199 184 1	356		354	•	199 554 5		356		354
199 186 8	356		354	•	199 556 1		356		354
199 188 4	356		354	•	199 558 8		356		354
199 190 6	352	350		•	199 200 7		352	350	
199 192 2	352	350		•	199 202 3		352	350	
199 194 9	352	350		•	199 204 X		352	350	
199 196 5	352	350		•	199 206 6		352	350	
199 198 1	352	350		•	199 208 2		352	350	
199 319 4	360		358	>	199 541 3		361		359

Chainflex® ReadyCable®

SEW

Chainflex® PVC cables for the woodworking industry, for example

Typical application area - PVC

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes, timber processing

Chainflex® PUR cables for the tooling machine industry, for example

Typical application area - PUR

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

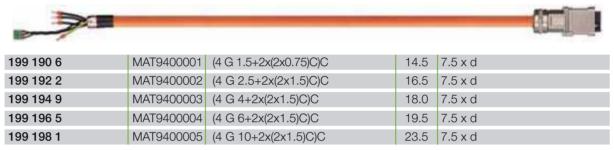
Chainflex® TPE cables for outdoor use, for example

Typical application area - TPE

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Our product engineers will be happy to advise you in your choice of application-specific cables.

Chainflex® servo cable


harnessed according to SEW standard (Amphenol)

Technical information

- Oil-resistant and coolant-resistant, shielded
- Notch-resistant, hydrolysis-resistant and microberesistant
- Intermediate jacket on the basis of PUR
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, approx. 90% optical, and metal foil
- Nominal voltage: 600/1000 V

Chainflex® PUR servo cable, oil-resistant: Direct lines

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PUR servo cable, oil-resistant: Extension cables

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

199 200 7	MAT9401001	(4 G 1.5+2x(2x0.75)C)C	14.5	7.5 x d
199 202 3	MAT9401002	(4 G 2.5+2x(2x1.5)C)C	16.5	7.5 x d
199 204 X	MAT9401003	(4 G 4+2x(2x1.5)C)C	18.0	7.5 x d
199 206 6	MAT9401004	(4 G 6+2x(2x1.5)C)C	19.5	7.5 x d
199 208 2	MAT9401005	(4 G 10+2x(2x1.5)C)C	23.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

<u>년</u>

- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90% optical
- Temperature range (moved): -20 °C to +80 °C
- Colour: orange (similar to RAL 2003)

Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter

Chainflex® PUR servo cable, oil-resistant: Direct lines

SEW igus® Number of cores and conductor Ø Bending Part No. nominal cross section [mm²] radius Part No. mm

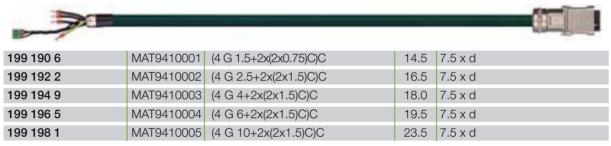
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PUR servo cable, oil-resistant: Extension cables

SEW igus® Number of cores and conductor Bending Ø Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductorter

Chainflex® servo cable

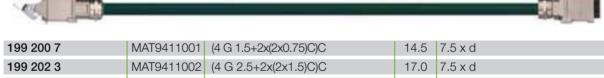

harnessed according to SEW standard (Amphenol)

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Intermediate jacket on the basis of PVC
- Signal pairs: pair shielding of extremely readily bending/firm cooper shield, coverage approx. 70% linear, approx. 90% optical, and metal foil
- Temperature range (moved): -5 °C to +70 °C

Chainflex® PVC servo cable, oil-resistant: Direct lines

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius



Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PVC servo cable, oil-resistant: Extension cables

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

100 200 1	100 11 100 1	(1 G 1.012x(2x0.10)0)0	1 1.0	7.0 X G
199 202 3	MAT9411002	(4 G 2.5+2x(2x1.5)C)C	17.0	7.5 x d
199 204 X	MAT9411003	(4 G 4+2x(2x1.5)C)C	18.5	7.5 x d
199 206 6	MAT9411004	(4 G 6+2x(2x1.5)C)C	20.5	7.5 x d
199 208 2	MAT9411005	(4 G 10+2x(2x1.5)C)C	24.0	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

eplan download, configurator, PDF catalogues, lifetime ...

<u>년</u>

Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90% optical

Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter

- Nominal voltage: 600/1000 V
- Colour: green (similar to RAL 6005)

Chainflex® PVC servo cable, oil-resistant: Direct lines

SEW igus® Number of cores and conductor Ø Bending Part No. nominal cross section [mm²] Part No. mm radius

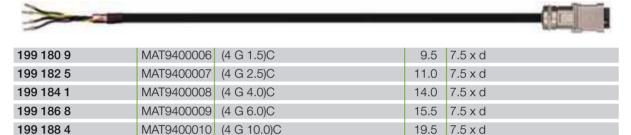
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PVC servo cable, oil-resistant: Extension cables

SEW igus® Number of cores and conductor Ø Bending Part No. Part No. nominal cross section [mm²] radius mm

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® power cable

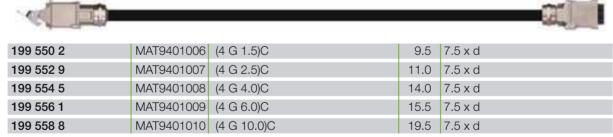

harnessed according to SEW standard (Amphenol)

Technical information

- Oil-resistant and coolant-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -35 °C to +90 °C
- Intermediate jacket on the basis of TPE
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Chainflex® TPE power cable, oil-resistant: Direct lines

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius



Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® TPE power cable, oil-resistant: Extension cables

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits

G = with earthed conductor green-yellow x = without earthed conductor

eplan download, configurator, PDF catalogues, lifetime ...

<u>le</u>

Igus

Colour: black (similar to RAL 9005)

Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Nominal voltage: 600/1000 V

Chainflex® TPE power cable, oil-resistant: Direct lines

SEWigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

For maximum load requirements

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® TPE power cable, oil-resistant: Extension cables

SEWigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

Chainflex® power cable

harnessed according to SEW standard (Amphenol)

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Intermediate jacket on the basis of PVC
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Temperature range (moved): -5 °C to +70 °C

Chainflex® PVC power cable, oil-resistant: Direct lines

SEW Number of cores and conductor igus® Bending Ø Part No. nominal cross section [mm²] Part No. mm radius

199 180 9	MAT9410006	(4 G 1.5)C	10.5	7.5 x d
199 182 5	MAT9410007	(4 G 2.5)C	12.5	7.5 x d
199 184 1	MAT9410008	(4 G 4.0)C	14.0	7.5 x d
199 186 8	MAT9410009	(4 G 6.0)C	16.0	7.5 x d
199 188 4	MAT9410010	(4 G 10.0)C	20.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PVC power cable, oil-resistant: Extension cables

SEW Number of cores and conductor Bending igus® Ø Part No. Part No. nominal cross section [mm²] radius mm

199 550 2	MAT9411006	(4 G 1.5)C	10.5	7.5 x d
199 552 9	MAT9411007	(4 G 2.5)C	12.5	7.5 x d
199 554 5	MAT9411008	(4 G 4.0)C	14.0	7.5 x d
199 556 1	MAT9411009	(4 G 6.0)C	16.0	7.5 x d
199 558 8	MAT9411010	(4 G 10.0)C	20.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

<u>--</u>

357

7.55

- Nominal voltage: 600/1000 V
- Minimum bending radius for use in Energy

Chains®: 7.5 x cable diameter

Colour: anthracite-gray (similar to RAL 7016)

Chainflex® PVC power cable, oil-resistant: Direct lines

SEWigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® PVC power cable, oil-resistant: Extension cables

 SEW
 igus®
 Number of cores and conductor
 Ø
 Bending

 Part No.
 Part No.
 nominal cross section [mm²]
 mm
 radius

Chainflex® encoder cable

harnessed according to SEW standard

Technical information

- Oil-resistant and coolant-resistant, shielded
- Thin-walled, halogen-free
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Intermediate jacket on the basis of TPE

Chainflex® TPE signal/encoder cable, oil-resistant: Direct lines

199 319 4	MAT9500001	(4x(2x0.25)+(2x0.5))C	9.5	7.5 x d
1332 743 7	MAT9500002	(4x(2x0.25)+(2x0.5))C	9.5	7.5 x d
1332 455 1	MAT9500003	(4x(2x0.25)+(2x0.5))C	9.5	7.5 x d
198 930 8	MAT9500004	(4x(2x0.25)+(2x0.5))C	9.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

TPE

■ Temperature range (moved): -35 °C to +100 °C

Nominal voltage: 30 V

Colour: green (similar to RAL 6018)

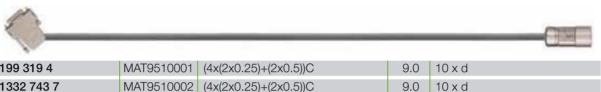
Chainflex® TPE signal/encoder cable, oil-resistant: Extension cables

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

III KENDE				
199 541 3	MAT9501001	(4x(2x0.25)+(2x0.5))C	9.5	7.5 x d
199 540 5	MAT9501002	(4x(2x0.25)+(2x0.5))C	9.5	7.5 x d
0593 968 2	MAT9501003	(4x(2x0.25)+(2x0.5))C	9.5	7.5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® encoder cable


harnessed according to SEW standard

Technical information

- oil-resistant
- Flame-retardant
- Shielded
- Temperature range (moved): -5 °C to +70 °C
- Overall shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, 90%
- Nominal voltage: 30 V

Chainflex® PVC signal/encoder cable, oil-resistant: Direct lines

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

199 319 4	MAT9510001	(4x(2x0.25)+(2x0.5))C	9.0	10 x d
1332 743 7	MAT9510002	(4x(2x0.25)+(2x0.5))C	9.0	10 x d
1332 455 1	MAT9510003	(4x(2x0.25)+(2x0.5))C	9.0	10 x d
198 930 8	MAT9510004	(4x(2x0.25)+(2x0.5))C	9.0	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Minimum bending radius for use in Energy Chains®:

10 x cable diameter

Oclour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant: Extension cables

SEW	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

H 4-10-10				
199 541 3	MAT9511001	(4x(2x0.25)+(2x0.5))C	9.0	10 x d
199 540 5	MAT9511002	(4x(2x0.25)+(2x0.5))C	9.0	10 x d
0593 968 2	MAT9511003	(4x(2x0.25)+(2x0.5))C	9.0	10 x d

Heidenhain - Selection table according to part numbers and sheath materials.

Direct line					Extension cable				
	Outer jacl PVC	ket materi PUR	al on page TPE	e		Ou	ter jacket PVC	material o PUR	n page TPE
298 399-xx		365	367						
309 738-xx		364	366						
309 774-xx		365	367						
309 777-xx		365	367						
309 778-xx		365	367						
310 193-xx		365	367						
310 197-xx		364	366						
310 199-xx		364	366						
324 544-xx		364	366						
332 115-xx		364	366						
354 411-xx		365	367						
355 398-xx		365	367						
360 472-xx		364	366						

Heidenhain

Chainflex® PUR cables for the tooling machine industry, for example

Typical application area - PUR

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Chainflex® TPE cables for outdoor use, for example

Typical application area - TPE

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Our product engineers will be happy to advise you in your choice of application-specific cables.

C

Chainflex® adapter cable

harnessed according to Heidenhain standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Notch-resistant, hydrolysis-resistant and microbe-resistant
- Flame-retardant

- T/R (moved): -20 °C to +80°C
- Nominal voltage: 30 V
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Chainflex® PUR signal/encoder cable, oil-resistant: Connecting cable

Heidenhain Part No.		ø Bending nm radius
THE T		
332 115-xx	MAT94901001 (4x(2x0,14)+(4x0,14)C+4x0,5)C	2,0 10 x d
		and the
94 7		
360 472-xx	MAT94901002 (4x(2x0,14)+(4x0,14)C+4x0,5)C	2,0 10 x d
		12-76
310 197-xx	MAT94902001 (3x(2x0,14)C+(2x0,5)C)C	2,0 10 x d
310 197-	NIAT 9490200 T (3X(2X0, 14)C+(2X0, 3)C)C 12	2,0 10 X U
06 0 1		
		F
324 544-xx	MAT94902002 (4x(2x0,14)+(4x0,14)C+4x0,5)C	2,0 10 x d
310 199-xx	MAT94902003 (4x(2x0,14)+4x0,5)C	0,0 10 x d
309 738-xx	MAT94903001 (4x(2x0,14)+4x0,5)C 10	0,0 10 x d

Minimum bending radius for use in Energy Chains®:

10 x cable diameter

Colour: green (similar to RAL 6018)

Chainflex® PUR signal/encoder cable, oil-resistant: Connecting cable

Heidenhain	igus® Number of cores and conductor	ø Bending
Part No.	Part No. nominal cross section [mm²]	mm radius
4		/
9		198
354 411-xx	MAT94904001 (4x(2x0,14)+(4x0,14)C+4x0,5)C	12,0 10 x d
355 398-xx	MAT94904002 (4x(2x0,14)+(4x0,14)C+4x0,5)C	12,0 10 x d
06(1)0		77.04
298 399-xx	MAT94905001 (4x(2x0,14)+4x0,5)C	10,0 10 x d
		· '
		To TV as
200 774	MATO4000001 (4)/0,014), 4,05\0	100 1044
309 774-xx	MAT94906001 (4x(2x0,14)+4x0,5)C	10,0 10 x d
061 (1)		
309 777-xx	MAT94907001 (4x(2x0,14)+4x0,5)C	10,0 10 x d
309 778-xx	MAT94907002 (4x(2x0,14)+(4x0,14)C+4x0,5)C	12,0 10 x d
STEPO		
310 193-xx	MAT94907003 (3x(2x0,14)C+(2x0,5)C)C	12,0 10 x d

Chainflex® adapter cable

harnessed according to Heidenhain standard

Technical information

- Oil-resistant
- Shielded
- T/R (moved): -35 °C to + 100°C
- Nominal voltage: 30 V

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter

Chainflex® TPE signal/encoder cable, oil-resistant: Connecting cable

Heidenhain Part No.	igus® Number of cores and conductor ø Bending Part No. nominal cross section [mm²] mm radius	
98.7		-
332 115 -xx	MAT93901001 (4x(2x0,14)+(4x0,14)C+4x0,5)C 12,0 10 x d	3—_F
360 472-xx	MAT93901002 (4x(2x0,14)+(4x0,14)C+4x0,5)C	-
310 197-xx	MAT93902001 (3x(2x0,14)C+(2x0,5)C)C 12,5 10 x d	
98 7 1		
324 544-xx	MAT93902002 (4x(2x0,14)+(4x0,14)C+4x0,5)C 12,0 10 x d	
310 199-xx	MAT93902003 (4x(2x0,14)+4x0,5)C 9,0 10 x d	
		II V and
309 738-xx	MAT93903001 (4x(2x0,14)+4x0,5)C 9,0 10 x d	

Oclour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant: Connecting cable

Heidenhain Part No.	igus® Number of cores and conductor Part No. nominal cross section [mm²]	ø Bending mm radius
354 411-xx	MAT93904001 (4x(2x0,14)+(4x0,14)C+4x0,5)C	12,0 10 x d
355 398-xx	MAT93904002 (4x(2x0,14)+(4x0,14)C+4x0,5)C	12,0 10 x d
298 399-xx	MAT93905001 (4x(2x0,14)+4x0,5)C	9,0 10 x d
309 774-xx	MAT93906001 (4x(2x0,14)+4x0,5)C	9,0 10 x d
		The same of the sa
309 777-xx	MAT93907001 (4x(2x0,14)+4x0,5)C	9,0 10 x d
309 778-xx	MAT93907002 (4x(2x0,14)+(4x0,14)C+4x0,5)C	12,0 10 x d
310 193-xx	MAT93907003 (3x(2x0,14)C+(2x0,5)C)C	12,5 10 x d

ELAU - Selection table according to part numbers and sheath materials.

Direct line					Extension cable				
(Outer jack PVC	ket materi PUR	al on pag TPE	е		Out	ter jacket PVC	material o PUR	n page TPE
	FVC	FOR	11715						117
E-MO-067	370	371							
E-MO-111 SH-Motor 1.5	370	371							
E-MO-087	370	371							
E-MO-092	370	371							
E-MO-113 SH-Motor 2.5	370	371							
E-FB-060	372		373						
E-FB-071	372		373						
E-FB-080	372		373						

ELAU

Chainflex® PVC cables for the woodworking industry, for example

Typical application area - PVC

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to
 100 m
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes, timber

Chainflex® PUR cables for the tooling machine industry, for example

Typical application area - PUR

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Chainflex® TPE cables for outdoor use, for example

Typical application area - TPE

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Our product engineers will be happy to advise you in your choice of application-specific cables.

Chainflex® servo cable

harnessed according to ELAU standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C
- Nominal voltage: 600/1000 V

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 7,5 x cable diameter
- Colour: green (similar to RAL 6005)

Chainflex® PVC servo cable, oil-resistant

ELAU Part No. igus® Part No. Number of cores and conductor nominal cross section [mm²]

ø mm

Bending radius

E 140 007	NATO 470004 (4 O 4 E 0 (0 0 7E)0)0	0 445 75 1

E-MO-067	MA19470001	(4 G 1,5+2x(2x0,75)C)C	14,5	7,5 x d
E-MO-092	MAT9470004	(4 G 1,5+2x(2x0,75)C)C	14,5	7,5 x d

E-MO-111 SH-Motor 1.5 MAT9470002 (4 G 1,5+2x(2x0,75)C)C 14,5 7,5 x d

E-MO-087 MAT9470003 (4 G 2,5+2x(2x1,5)C)C 17,0 7,5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

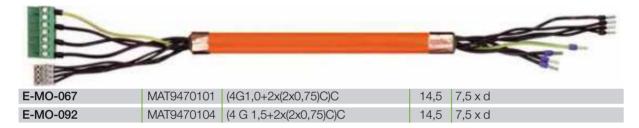
E-MO-113 SH-Motor 2.5 MAT9470005 (4 G 2,5+2x(2x1,5)C)C

Servo **PUR**

Chainflex® Systems or Drive Technology

+49-2203-96 49-222 +49-2203-96 49-0 Fax <u>e</u>

harnessed according to ELAU standard


Technical information

- Oil-resistant and coolant-resistant
- Notch-resistant, hydrolysis-resistant and microbe-resistant
- Flame-retardant
- T/R (moved): $-20 \,^{\circ}\text{C}$ to $+80 \,^{\circ}\text{C}$

- Nominal voltage: 600/1000 V
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Colour: orange (similar to RAL 2003)

Chainflex® PUR servo cable, oil-resistant

ELAU iaus® Number of cores and conductor Ø Bendina Part No. Part No. nominal cross section [mm²] radius mm

E-MO-111 SH-Motor 1.5 MAT9470102 (4 G 1,5+2x(2x0,75)C)C 14,5 7,5 x d

E-MO-087 MAT9470103 (4 G 2,5+2x(2x1,5)C)C

E-MO-113 SH-Motor 2.5 MAT9470105 (4 G 2,5+2x(2x1,5)C)C Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® encoder cable harnessed according to ELAU standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C
- Nominal voltage: 30 V

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Oclour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant

ELAUigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

E-FB-060	MAT9480001	(4x(2x0,25)+2x0,5)c	9,0	10 x d
E-FB-071	MAT9480002	(4x(2x0,25)+2x0,5)c	9,0	10 x d

E-FD-000	IVIA 1 9400003	(4X(ZXU,Z3)+ZXU,3)C	9,0	10.

Chainflex® encoder cable

Encoder TPE

Chainflex® Systems or Drive Technology

+49-2203-96 49-222 +49-2203-96 49-0

<u>--</u>

harnessed according to ELAU standard

Technical information

- Oil-resistant
- Shielded
- T/R (moved): -35 °C to + 100°C
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant

ELAU	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

E-FB-080	MAT9480103	(4x(2x0,25)+2x0,5)C	9,5	10 x
----------	------------	---------------------	-----	------

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

850 types from stock no cutting costs
... and order online www.igus.eu/en/CFELAU (for up to 10 cuts of the same)

(for up to 10 cuts of the same type)

Danaher Motion - Selection table according to part numbers and sheath materials.

Direct line					Extension cable		
	Outer jack PVC	et materi PUR	al on page TPE		Outer jacket PVC	material on pa PUR TF	
84972	376		378				
34973	376		378				
34974	376		378				
34975	376		378				
35034	377		379				
35035	377		379				
35036	377		379				
35037	377		379				
35039	377		379				
35040	377		379				
35041	377		379				
85042	377		379				
37655	376		378				
39918	382		386				
89952	382		386				
89953	382		386				
39954	386		386				
89956	382		386				
89957	380		384				
89959	383		387				
89960	383	004	387				
39961	380	384					
39962	383		387				
89963	380	384					
89964	383		387				
39965	380	384					
39966	383		387				
39967	380	384					
89968	381	385					
89969	381	385					
89970	381	385					
89971	381	385					
89972	381	385	000				
90083	382		386				
90084	382		386				
90085	382		386				
90086	382		386				
90087	382		386				
90088	380	384					
90089	380	384					
90090	380	384					
90091	380	384					
90091	380	384					
90092	376	304	279				
			378				
91019	376		378				
91807	376		378				
91811	376		378				
92205	376		378				
102575	382		386				
102576	382		386				
102579	380	384					
102580	380	384					
102806	382		386				
102807	382		386				
102808	382		386				
		004	300				
102809 102810	380 380	384					
	790	384					

Danaher Motion – Selection table according to part numbers and sheath materials.

Direct line				Extension cable			
	Outer jack PVC	cet materia PUR	al on page TPE		Outer jacket i PVC	material on page PUR TPE	
02811	380	384					
07473	382		386				
07474	382		386				
07475	382		386				
07476	382		386				
07477	382		386				
		004	300				
07479	380	384					
07480	380	384					
07481	380	384					
07482	380	384					
07483	380	384					
07485	382		386				
07486	382		386				
07487	382		386				
07488	382		386				
07489	382		386				
07491	380	384	000				
07492	380	384					
07493	380	384					
07494	380	384					
07495	380	384					
07915	376		380				
07916	376		378				
07917	376		378				
07918	376		378				
07919	376		378				
00456	383		387				
00457	383		387				
00458	383		387				
00459	383		387				
00460	383		387				
00462	381	381					
00463	381	385					
00464	381	385					
00465	381	385					
00466	381	385					
00468	383		387				
00469	383		387				
00470	383		387				
00471	383		387				
00472	383	005	387				
00474	381	385					
00475	381	385					
00476	381	385					
00477	381	385					
00478	381	385					
00618	383		387				
00619	383		387				
00620	383		387				
00621	383		387				
00622	383		387				
		005	307				
00623	381	385					
00624	381	385					
00625	381	385					
00626	381	385					
00627	381	385					

DANAHER MOTION

Chainflex® signal cable

harnessed according to Danaher Motion standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C

- Nominal voltage: 300/300 V
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter

Chainflex® PVC signal/encoder cable, oil-resistant

Danaher Motionigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

84972	MAT9320001	(4 x (2 x 0,25))C	8,0	10 x d
84973	MAT9320009	(4 x (2 x 0,25))C	8,0	10 x d
84974	MAT9320010	(4 x (2 x 0,25))C	8,0	10 x d
84975	MAT9320011	(4 x (2 x 0,25))C	8,0	10 x d
87655	MAT9320012	(4 x (2 x 0,25))C	8,0	10 x d
90287	MAT9320002	(8 x (2 x 0,25))C	11,5	10 x d
91019	MAT9320013	(8 x (2 x 0,25))C	11,5	10 x d
91811	MAT9320014	(8 x (2 x 0,25))C	11,5	10 x d
91807	MAT9320015	(8 x (2 x 0,25))C	11,5	10 x d
92205	MAT9320016	(8 x (2 x 0,25))C	11,5	10 x d
107915	MAT9320004	(8 x (2 x 0,25))C	11,5	10 x d
107916	MAT9320017	(8 x (2 x 0,25))C	11,5	10 x d
107917	MAT9320018	(8 x (2 x 0,25))C	11,5	10 x d
107918	MAT9320019	(8 x (2 x 0,25))C	11,5	10 x d
107919	MAT9320020	(8 x (2 x 0,25))C	11,5	10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Oclour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant

Danaher Motion	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

				1 64
85034	MAT9320007	(6 x (2 x 0,25))C	9,5	10 x d
85035	MAT9320021	(6 x (2 x 0,25))C	9,5	10 x d
85036	MAT9320022	(6 x (2 x 0,25))C	9,5	10 x d
85037	MAT9320023	(6 x (2 x 0,25))C	9,5	10 x d

85039	MAT9320008	(6 x (2 x 0,25))C	9,5	10 x d
85040	MAT9320024	(6 x (2 x 0,25))C	9,5	10 x d
85041	MAT9320025	(6 x (2 x 0,25))C	9,5	10 x d
85042	MAT9320026	(6 x (2 x 0,25))C	9,5	10 x d

Chainflex® signal cable

harnessed according to Danaher Motion standard

Technical information

- Oil-resistant
- Shielded

107916

107917

107918

107919

- T/R (moved): -35 °C to + 100°C
- Nominal voltage: 300/300 V

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter

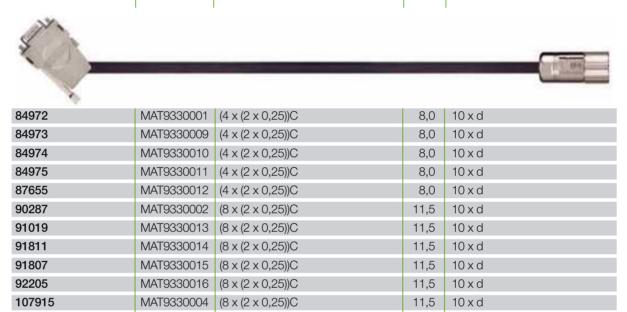
10 x d

10 x d

10 x d

10 x d

11,5


11,5

11,5

11,5

Chainflex® TPE signal/encoder cable, oil-resistant

Danaher Motionigus®Number of cores and conductorØBendingPart No.Part No.nominal cross section [mm²]mmradius

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

MAT9330019 (8 x (2 x 0,25))C

MAT9330020 (8 x (2 x 0,25))C

(8 x (2 x 0,25))C

(8 x (2 x 0,25))C

G = with earthed conductor green-yellow x = without earthed conductor

MAT9330017

MAT9330018

Olour: dark-blue (similar to RAL 5011)

Chainflex® TPE signal/encoder cable, oil-resistant

Danaher Motion	igus®	Number of cores and conductor	Ø	Bending
Part No.	Part No.	nominal cross section [mm²]	mm	radius

				((44)
85034	MAT9330007	(6 x (2 x 0,25))C	9,5	10 x d
85035	MAT9330021	(6 x (2 x 0,25))C	9,5	10 x d
85036	MAT9330022	(6 x (2 x 0,25))C	9,5	10 x d
85037	MAT9330023	(6 x (2 x 0,25))C	9,5	10 x d

85039	MAT9330008	(6 x (2 x 0,25))C	9,5	10 x d
85040	MAT9330024	(6 x (2 x 0,25))C	9,5	10 x d
85041	MAT9330025	(6 x (2 x 0,25))C	9,5	10 x d
85042	MAT9330026	(6 x (2 x 0,25))C	9,5	10 x d

Chainflex® servo cable

harnessed according to Danaher Motion standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter

Chainflex® PVC servo cable, oil-resistant

Danaher Motion Part No.

igus® Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm Bending radius

107491	MAT9340001	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107492	MAT9340005	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107493	MAT9340006	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107494	MAT9340007	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107495	MAT9340008	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107479	MAT9340009	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107480	MAT9340010	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107481	MAT9340011	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107482	MAT9340012	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107483	MAT9340013	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102579	MAT9340014	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102580	MAT9340015	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102809	MAT9340016	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102810	MAT9340017	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102811	MAT9340018	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90088	MAT9340019	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90089	MAT9340020	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90090	MAT9340021	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90091	MAT9340022	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90092	MAT9340023	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89957	MAT9340024	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89961	MAT9340025	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89963	MAT9340026	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89965	MAT9340027	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89967	MAT9340028	(4 G 1,5+(2x1)C)C	12,5	7,5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits. G = with earthed conductor green-yellow x = without earthed conductor

eplan download, configurator, PDF catalogues, lifetime ...

Nominal voltage: 600/1000 V

Colour: green (similar to RAL 6005)

Chainflex® PVC servo cable, oil-resistant

Danaher Motion Part No.

igus® Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm Bending radius

_	_			
	Libra	100	100	1775
	-109	ME.	-3711	-
_	-		-	-

89968	MAT9340029	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89970	MAT9340030	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89971	MAT9340031	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89972	MAT9340032	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89969	MAT9340033	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200462	MAT9340034	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200463	MAT9340035	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200464	MAT9340036	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200465	MAT9340037	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200466	MAT9340038	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200474	MAT9340039	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200475	MAT9340040	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200476	MAT9340041	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200477	MAT9340042	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200478	MAT9340043	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200623	MAT9340044	(4 G 4,0+(2x1)C)C	15,5	7,5 x d
200624	MAT9340045	(4 G 4,0+(2x1)C)C	15,5	7,5 x d
200625	MAT9340046	(4 G 4,0+(2x1)C)C	15,5	7,5 x d
200626	MAT9340047	(4 G 4,0+(2x1)C)C	15,5	7,5 x d
200627	MAT9340048	(4 G 4,0+(2x1)C)C	15,5	7,5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® servo cable

harnessed according to Danaher Motion standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Notch-resistant, hydrolysis-resistant and microbe-resistant
- Flame-retardant

- T/R (moved): -20 °C to + 80°C
- Nominal voltage: 600/1000 V
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Chainflex® PUR servo cable, oil-resistant

Danaher Motion igus® Part No. Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm

Bending radius

107491	MAT9440001	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107492	MAT9440005	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107493	MAT9440006	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107494	MAT9440007	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107495	MAT9440008	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107479	MAT9440009	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107480	MAT9440010	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107481	MAT9440011	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107482	MAT9440012	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
107483	MAT9440013	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102579	MAT9440014	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102580	MAT9440015	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102809	MAT9440016	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102810	MAT9440017	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
102811	MAT9440018	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90088	MAT9440019	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90089	MAT9440020	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90090	MAT9440021	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90091	MAT9440022	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
90092	MAT9440023	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89957	MAT9440024	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89961	MAT9440025	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89963	MAT9440026	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89965	MAT9440027	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
89967	MAT9440028	(4 G 1,5+(2x1)C)C	12,5	7,5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

... no minimum order quantity

eplan download, configurator, PDF catalogues, lifetime ...

Minimum bending radius for use in Energy Chains®:

7,5 x cable diameter

Colour: orange (similar to RAL 2003)

Chainflex® PUR servo cable, oil-resistant

Danaher Motion Part No.

igus® Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm Bending radius

_	_		_	-	_	
	_	_	_	-		١.
	铝	3.6		99 n.		8
	-	_	_	44		r

89968	MAT9440029	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89970	MAT9440030	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89971	MAT9440031	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89972	MAT9440032	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
89969	MAT9440033	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200462	MAT9440034	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200463	MAT9440035	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200464	MAT9440036	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200465	MAT9440037	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200466	MAT9440038	(4 G 1,5+(2x1)C)C	12,5	7,5 x d
200474	MAT9440039	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200475	MAT9440040	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200476	MAT9440041	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200477	MAT9440042	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200478	MAT9440043	(4 G 2,5+(2x1)C)C	13,5	7,5 x d
200623	MAT9440044	(4 G 4,0+(2x1)C)C	16,0	7,5 x d
200624	MAT9440045	(4 G 4,0+(2x1)C)C	16,0	7,5 x d
200625	MAT9440046	(4 G 4,0+(2x1)C)C	16,0	7,5 x d
200626	MAT9440047	(4 G 4,0+(2x1)C)C	16,0	7,5 x d
200627	MAT9440048	(4 G 4,0+(2x1)C)C	16,0	7,5 x d

Chainflex® power cable

harnessed according to Danaher Motion standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter

Chainflex® PVC power cable, oil-resistant

Danaher Motion Part No.

igus® Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm Bending radius

107485	MAT9340002	(4 G 1,5)C	10,5	7,5 x d
107486	MAT9340049	(4 G 1,5)C	10,5	7,5 x d
107487	MAT9340050	(4 G 1,5)C	10,5	7,5 x d
107488	MAT9340051	(4 G 1,5)C	10,5	7,5 x d
107489	MAT9340052	(4 G 1,5)C	10,5	7,5 x d
107473	MAT9340053	(4 G 1,5)C	10,5	7,5 x d
107474	MAT9340054	(4 G 1,5)C	10,5	7,5 x d
107475	MAT9340055	(4 G 1,5)C	10,5	7,5 x d
107476	MAT9340056	(4 G 1,5)C	10,5	7,5 x d
107477	MAT9340057	(4 G 1,5)C	10,5	7,5 x d
102575	MAT9340058	(4 G 1,5)C	10,5	7,5 x d
102576	MAT9340059	(4 G 1,5)C	10,5	7,5 x d
102806	MAT9340060	(4 G 1,5)C	10,5	7,5 x d
102807	MAT9340061	(4 G 1,5)C	10,5	7,5 x d
102808	MAT9340062	(4 G 1,5)C	10,5	7,5 x d
90083	MAT9340063	(4 G 1,5)C	10,5	7,5 x d
90084	MAT9340064	(4 G 1,5)C	10,5	7,5 x d
90085	MAT9340065	(4 G 1,5)C	10,5	7,5 x d
90086	MAT9340066	(4 G 1,5)C	10,5	7,5 x d
90087	MAT9340067	(4 G 1,5)C	10,5	7,5 x d
89918	MAT9340068	(4 G 1,5)C	10,5	7,5 x d
89952	MAT9340069	(4 G 1,5)C	10,5	7,5 x d
89953	MAT9340070	(4 G 1,5)C	10,5	7,5 x d
89954	MAT9340071	(4 G 1,5)C	10,5	7,5 x d
89956	MAT9340072	(4 G 1,5)C	10,5	7,5 x d

Nominal voltage: 600/1000 V

Colour: black (similar to RAL 9005)

Chainflex® PVC power cable, oil-resistant

Danaher Motion Part No.

igus® Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm Bending radius

89959	MAT9340004	(4 G 2,5)C	12,5	7,5 x d
89960	MAT9340073	(4 G 2,5)C	12,5	7,5 x d
89962	MAT9340074	(4 G 2,5)C	12,5	7,5 x d
89964	MAT9340075	(4 G 2,5)C	12,5	7,5 x d
89966	MAT9340076	(4 G 2,5)C	12,5	7,5 x d
200456	MAT9340077	(4 G 1,5)C	10,5	7,5 x d
200457	MAT9340078	(4 G 1,5)C	10,5	7,5 x d
200458	MAT9340079	(4 G 1,5)C	10,5	7,5 x d
200459	MAT9340080	(4 G 1,5)C	10,5	7,5 x d
200460	MAT9340081	(4 G 1,5)C	10,5	7,5 x d
200468	MAT9340082	(4 G 2,5)C	12,5	7,5 x d
200469	MAT9340083	(4 G 2,5)C	12,5	7,5 x d
200470	MAT9340084	(4 G 2,5)C	12,5	7,5 x d
200471	MAT9340085	(4 G 2,5)C	12,5	7,5 x d
200472	MAT9340086	(4 G 2,5)C	12,5	7,5 x d
200618	MAT9340087	(4 G 4,0)C	14,0	7,5 x d
200619	MAT9340088	(4 G 4,0)C	14,0	7,5 x d
200620	MAT9340089	(4 G 4,0)C	14,0	7,5 x d
200621	MAT9340090	(4 G 4,0)C	14,0	7,5 x d
200622	MAT9340091	(4 G 4,0)C	14,0	7,5 x d

Chainflex® power cable

harnessed according to Danaher Motion standard

Technical information

- Oil-resistant
- Shielded
- Hydrolysis-resistant and microbe-resistant
- Flame-retardant

- T/R (moved): -35 °C to + 90°C
- Nominal voltage: 600/1000 V
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical

Chainflex® TPE power cable, oil-resistant

Danaher Motion Part No.

igus® Part No.

Number of cores and conductor nominal cross section [mm²]

Ø mm Bending radius

107485	MAT9440002	(4 G 1,5)C	9,5	7,5 x d
107486	MAT9440049	(4 G 1,5)C	9,5	7,5 x d
107487	MAT9440050	(4 G 1,5)C	9,5	7,5 x d
107488	MAT9440051	(4 G 1,5)C	9,5	7,5 x d
107489	MAT9440052	(4 G 1,5)C	9,5	7,5 x d
107473	MAT9440053	(4 G 1,5)C	9,5	7,5 x d
107474	MAT9440054	(4 G 1,5)C	9,5	7,5 x d
107475	MAT9440055	(4 G 1,5)C	9,5	7,5 x d
107476	MAT9440056	(4 G 1,5)C	9,5	7,5 x d
107477	MAT9440057	(4 G 1,5)C	9,5	7,5 x d
102575	MAT9440058	(4 G 1,5)C	9,5	7,5 x d
102576	MAT9440059	(4 G 1,5)C	9,5	7,5 x d
102806	MAT9440060	(4 G 1,5)C	9,5	7,5 x d
102807	MAT9440061	(4 G 1,5)C	9,5	7,5 x d
102808	MAT9440062	(4 G 1,5)C	9,5	7,5 x d
90083	MAT9440063	(4 G 1,5)C	9,5	7,5 x d
90084	MAT9440064	(4 G 1,5)C	9,5	7,5 x d
90085	MAT9440065	(4 G 1,5)C	9,5	7,5 x d
90086	MAT9440066	(4 G 1,5)C	9,5	7,5 x d
90087	MAT9440067	(4 G 1,5)C	9,5	7,5 x d
89918	MAT9440068	(4 G 1,5)C	9,5	7,5 x d
89952	MAT9440069	(4 G 1,5)C	9,5	7,5 x d
89953	MAT9440070	(4 G 1,5)C	9,5	7,5 x d
89954	MAT9440071	(4 G 1,5)C	9,5	7,5 x d
89956	MAT9440072	(4 G 1,5)C	9,5	7,5 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

G = with earthed conductor green-yellow x = without earthed conductor

eplan download, configurator, PDF catalogues, lifetime ...

Tel.

Minimum bending radius for use in Energy Chains®:

7.5 x cable diameter

Colour: black (similar to RAL 9005)

Chainflex® TPE power cable, oil-resistant

Danaher Motion igus® Number of cores and conductor Bending Ø Part No. Part No. nominal cross section [mm²] radius mm

89959	MAT9440004	(4 G 2,5)C	11,0	7,5 x d
89960	MAT9440073	(4 G 2,5)C	11,0	7,5 x d
89962	MAT9440074	(4 G 2,5)C	11,0	7,5 x d
89964	MAT9440075	(4 G 2,5)C	11,0	7,5 x d
89966	MAT9440076	(4 G 2,5)C	11,0	7,5 x d
200456	MAT9440077	(4 G 1,5)C	9,5	7,5 x d
200457	MAT9440078	(4 G 1,5)C	9,5	7,5 x d
200458	MAT9440079	(4 G 1,5)C	9,5	7,5 x d
200459	MAT9440080	(4 G 1,5)C	9,5	7,5 x d
200460	MAT9440081	(4 G 1,5)C	9,5	7,5 x d
200468	MAT9440082	(4 G 2,5)C	11,0	7,5 x d
200469	MAT9440083	(4 G 2,5)C	11,0	7,5 x d
200470	MAT9440084	(4 G 2,5)C	11,0	7,5 x d
200471	MAT9440085	(4 G 2,5)C	11,0	7,5 x d
200472	MAT9440086	(4 G 2,5)C	11,0	7,5 x d
200618	MAT9440087	(4 G 4,0)C	14,0	7,5 x d
200619	MAT9440088	(4 G 4,0)C	14,0	7,5 x d
200620	MAT9440089	(4 G 4,0)C	14,0	7,5 x d
200621	MAT9440090	(4 G 4,0)C	14,0	7,5 x d
200622	MAT9440091	(4 G 4,0)C	14,0	7,5 x d

B&R - Selection table according to part numbers and sheath materials.

Direct line	Outer jack PVC	ket materi PUR	al on page TPE	Extension cable e	jacket r PVC	material o PUR	n page TPE
i8CMxxx.12-1	390	391					
i8CMxxx.12-3	390	391					
i8CMxxx.12-5	390	391					
i8CRxxx.12-1	392		393				
i8CExxx.12-1	394		395				

B&R

Chainflex® PVC cables for the woodworking industry, for example

Typical application area - PVC

- for high load requirements
- light oil influence
- preferably indoor applications, but also outdoor ones at temperatures > 5 °C
- especially for freely suspended and gliding travel distances up to
- Storage and retrieval units for high-bay warehouses, machining units/packaging machines, quick handling, indoor cranes, timber processing

Chainflex® PUR cables for the tooling machine industry, for example

Typical application area – PUR

- for maximum load requirements
- almost unlimited resistance to oil
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 100 m
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, outdoor cranes, low-temperature applications

Chainflex® TPE cables for outdoor use, for example

Typical application area – TPE

- for maximum load requirements
- almost unlimited resistance to oil, also with bio-oils
- Indoor and outdoor applications, UV-resistant
- especially for freely suspended and gliding travel distances up to 400 m and more
- Storage and retrieval units for high-bay warehouses, machining units/ machine tools, quick handling, clean room, semiconductor insertion, ship to shore, outdoor cranes, low-temperature applications

Our product engineers will be happy to advise you in your choice of application-specific cables.

Chainflex® servo cable

harnessed according to B&R standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C
- Nominal voltage: 600/1000 V

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 7,5 x cable diameter
- Colour: green (similar to RAL 6005)

Chainflex® PVC servo cable, oil-resistant

B&R Part No. igus® Part No. Number of cores and conductor nominal cross section [mm²]

ø E

Bending radius

i8CMxxx.12-1	MAT9610001	(4 G 1,5+2x(2x0,75)C)C	14,5	7,5 x d
i8CMxxx.12-3	MAT9610002	(4 G 4,0+2x(2x1,5)C)C	18,5	7,5 x d

i8CMxxx.12-5	MAT9610003	(4 G 10,0+2x(2x1,5)C)C	24,0	7,5 x d				
Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.								

G =with earthed conductor green-yellow x =without earthed conductor

Servo **PUR**

Chainflex® Systems or Drive Technology

harnessed according to B&R standard

Technical information

- Oil-resistant and coolant-resistant
- Shielded
- Notch-resistant, hydrolysis-resistant and microbe-resistant
- Flame-retardant
- T/R (moved): -20 °C to + 80°C

- Nominal voltage: 600/1000 V
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 7.5 x cable diameter
- Colour: orange (similar to RAL 2003)

Chainflex® PUR servo cable, oil-resistant

B&R iaus® Number of cores and conductor Ø Bendina Part No. Part No. nominal cross section [mm²] radius mm

946				
i8CMxxx.12-1	MAT9600001	(4 G 1,5+2x(2x0,75)C)C	14,5	7,5 x d
i8CMxxx.12-3	MAT9600002	(4 G 4,0+2x(2x1,5)C)C	18,0	7,5 x d
94(3)				
i8CMxxx.12-5	MAT9600003	(4 G 10,0+2x(2x1,5)C)C	23,5	7,5 x d

Chainflex® resolver cable harnessed according to B&R standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C
- Nominal voltage: 300/300 V

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Colour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant

B&R Part No.

iaus® Part No. Number of cores and conductor nominal cross section [mm²]

Ø mm

Bendina radius

i8CRxxx.12-1

MAT9640001 (3 x (2 x 0,25))C

7,0 10 x d

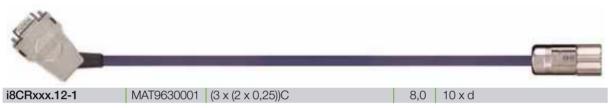
Chainflex® resolver cable

Resolver **TPE**

Chainflex® Systems or Drive Technology

+49-2203-96 49-222 +49-2203-96 49-0

Fax <u>년</u>


harnessed according to B&R standard

Technical information Oil-resistant

- Shielded
- T/R (moved): -35 °C to + 100°C
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 300/300 V
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Colour: dark-blue (similar to RAL 5011)

Chainflex® TPE signal/encoder cable, oil-resistant

B&R iaus® Number of cores and conductor Ø **Bendina** Part No. Part No. nominal cross section [mm²] radius mm

Chainflex® EnDat cable

harnessed according to B&R standard

Technical information

- Oil-resistant
- Shielded
- Flame-retardant
- T/R (moved): -5 °C to + 70°C
- Nominal voltage: 30 V

- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Oclour: gray (similar to RAL 7001)

Chainflex® PVC signal/encoder cable, oil-resistant

B&R Part No. igus® Part No. Number of cores and conductor nominal cross section [mm²]

ø mm

Bending radius

i8CExxx.12-1

MAT9670001 (5x(2x0,14)+2x0,5)C

(

9,0 10 x d

Note: The mentioned external diameters are maximum values and may tend toward lower tolerance limits.

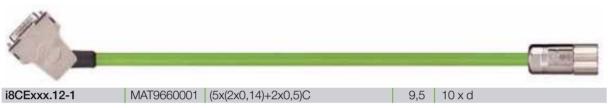
G = with earthed conductor green-yellow x = without earthed conductor

Chainflex® EnDat cable

EnDat TPE

Chainflex® Systems or Drive Technology

+49-2203-96 49-222 +49-2203-96 49-0 Fax <u>le</u>


harnessed according to B&R standard

Technical information

- Oil-resistant
- Shielded
- T/R (moved): -35 °C to + 100°C
- Total shield: extremely readily bending/solid copper shield, coverage approx. 70% linear, approx. 90% optical
- Nominal voltage: 30 V
- Minimum bending radius for use in Energy Chains®: 10 x cable diameter
- Colour: green (similar to RAL 6018)

Chainflex® TPE signal/encoder cable, oil-resistant

B&R iaus® Number of cores and conductor Ø **Bendina** Part No. Part No. nominal cross section [mm²] radius mm

igus[®] connectors

		igus [®] Connectors	Туре	Page
Connectors	S			
	To	SERIES A	Signal connector M23 standard [6 to 19-pin]	398
		SERIES B	Power connector Size 1 [6, 8 and 9-pin]	402
		SERIES B	Power connector Size 1 [6, 8 and 9-pin]	404
		SERIES M17	Signal and power connector M17 signal [17-pin] and power connector [4 to 9-pin]	405
		SERIES C	Power connector Size 1,5 [6, 8 and 9-pin]	408
		SERIES D	Power connector Size 3 [6 und 8-pin]	410
		SERIES S	Power connector Single-pin	412
	₽		Tools, accessories	414
			Glands	416

Test igus®! Order the service-pack today, get it tomorrow - from batch size 1

The package contains:

Your ordered connector together with contacts, installation instructions and a faxback order form.

Just call us! Tel. +49-2203-9649-800

NTERCONTEC

igus® connectors SERIES A

according to Intercontec standard

Signal connector M23 standard [6 to 19-pin]

Types

- Connector, standard and push-pull version, angular connector
- Lead-through
- Extension, standard or with central attachment
- PG 13.5-installation box
- Installation box straight with flange
- Installation box angled and turnable flexed with flange

Number of contacts

6.7, [8+1], 9, 10, 12, 16, 17, [16+3]

Technical data of the SERIES A

Temperature range -20 °C to 130 °C
Protection class IP 66/67 [plugged]

Electrical data 6 to 12-pin

Max. rated current 10 A

 $\begin{array}{ll} \mbox{Rated voltage} & 160 \mbox{ V (AC/DC)} \\ \mbox{Test voltage (L-L)} & 2500 \mbox{ V} \\ \mbox{Resistance} & < 5 \mbox{ m} \Omega \\ \mbox{Insertion cycles} & > 50 \end{array}$

Electrical data 16 to [16+3]-pin

Max. rated current 9 A

Rated voltage125 V (AC/DC)Test voltage (L-L)2500 VResistance $< 5 \text{ m}\Omega$ Insertion cycles> 50

Data according to VDE 0110/EN 61984, Clause 6.19.2.2

Degree of pollution 3

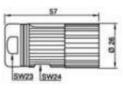
Over-voltage category III

Max. height of operation 2000 m

Used materials

Housing Zinc die-casting/brass, nickel-plated

Connection nut Brass, nickel-plated Insulation insert PA 6.6/PBT, UL 94/V0 Contacts Brass, gold-plated Seals FPM/HNBR Clamping ring Brass, nickel-plated

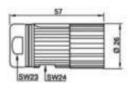


Signal plug 8+1 pin, nickel-plated Order no.

P-Type [8+1]-pin, 3 coding slots |8 x female crimping contact 1.0 mm, | Crimp area: slitted crimp area: 0.14-1.0 mm², 1 x female crimping 2.0 mm, slitted crimp area: 0.35-2.5 mm²

9.0-13.2 mm

Metal construction. **EMC** shielding


MAT0179600

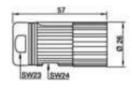
Signal plug 12 pin, nickel-plated Order no. MAT0179601

E-Type 12-pin, 3 coding slots

|Female crimping contact 1.0 mm, slitted crimp area: 0.14-1.0 mm²

Crimp area: 9.0-13.2 mm

Metal construction, **EMC** shielding

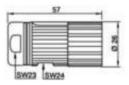


Signal plug 16 pin, nickel-plated Order no. MAT0179602

P-Type 16-pin, 1 coding slot

|Female crimping contact 1.0 mm,|Crimp area: slitted crimp area: 0.14-1.0 mm² | 9.0-13.2 mm

Metal construction, **EMC** shielding

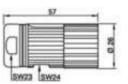


Signal plug 17 pin, nickel-plated Order no. MAT0179603

P-Type 17-pin, 3 coding slots

|Female crimping contact 1.0 mm, |Crimp area: slitted crimp area: 0.14-1.0 mm² | 9.0-13.2 mm

Metal construction, EMC shielding



Signal plug 16+3 pin, nickel-plated Order no.

P-Type [16+3]-pin, 1 coding slot |16 x female crimping contact 1.0 mm,| Crimp area: slitted crimp area: 0.14-1.0 mm², 3 x female crimping 1.5 mm, slitted crimp area: 0.14-1.0 mm²

9.0-13.2 mm

Metal construction, EMC shielding

MAT0179604

Housing with SpeedTEC quick-release fastener ▶ page 413

NTERCONTEC

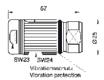
igus® connectors SERIES A

according to Intercontec standard

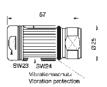
The straight signal receptacle is assembled with the contacts and insulation bodies.

The technical specifications apply accordingly. A cable clamp is not required by virtue of the design.

<u> 26</u>	
0-Ring - 2.5	
O ring	A
9,61	Ø 26
", III	,


Lead-through, with connection nut Order no. 8+1 pin		Metal construction, axial seal
MAT0179605		C1+4
Order no. 12 pin		
MAT0179606		C1
Order no. 16 pin		
MAT0179607		C1
Order no. 17 pin		
MAT0179608		C1
Order no. 16+3 pin		
MAT0179609		C1+5

Signal extension 8+1 pin, nickel-plated Order no. E-Type [8+1]-pin, 3 coding slots 8 x crimping contact 1.0 mm, crimp area: 0.14-1.0 mm² 1 x crimping contact 2.0 mm, crimp area: 0.35-2.5 mm² Crimp area: 9.0-13.2 mm Metal construction, EMC shielding


MAT0179610

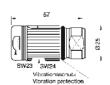
Signal extension 12 pin, nickel-plated Order no.

MAT0179611

P-Type 12-pin, 3 coding slots

Crimping contact 1.0 mm, crimp area: 0.14-1.0 mm²

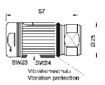
Crimp area: 9.0-13.2 mm


Metal construction, EMC shielding

Signal extension 16 pin, nickel-plated Order no. MAT0179612 E-Type 16-pin, 1 coding slot Crimping contact 1.0 mm, crimp area: 0.14-1.0 mm²

Crimp area: 9.,0-13.2 mm

Metal construction, EMC shielding

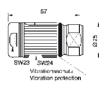

Housing with SpeedTEC quick-release fastener ▶ page 413

www.igus.eu/quickpin
igus® QuickPin - Configure ReadyCable® online

Signal extension 17 pin, nickel-plated Order no. MAT0179613 E-Type 17-pin, 3 coding slots Crimping contact 1.0 mm, crimp area: 0.14-1.0 mm²

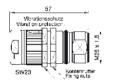
Crimp area: 9.0-13.2 mm

Metal construction, EMC shielding



Signal extension 16+3 pin, nickel-plated Order no. E-Type [16+3]-pin, 1 coding slot 16 x crimping contact 1.0 mm, crimp area: 0.14-1.0 mm² 3 x crimping contact 1.5 mm, crimp area: 0.14-1.0 mm²

Crimp area: 9.0-13.2 mm Metal construction, EMC shielding



MAT0179614

The extension with a central attachment is assembed with the above-mentioned contacts, insulation bodies and cable clamp.

The technical specifications apply accordingly.

Extension with central attachment Order no. 8+1 pin		Metal construction, EMC shielding
MAT0179615		C1+4
Order no. 12 pin		
MAT0179616		C1
Order no. 16 pin		
MAT0179617		C1
Order no. 17 pin		
MAT0179618		C1
Order no. 16+3 pin		
MAT0179619		C1+5

Housing with SpeedTEC quick-release fastener ▶ page 413

INTERCONTEC

igus[®] connectors SERIES B

according to Intercontec standard

Power connector Size 1 [6, 8 and 9-pin]

Types

- Connector, short and long, push-pull version, angular connector
- Extension, standard or with central attachment
- Lead-through

- Installation box straight with flange
- Installation box angled and turnable flexed with flange

Number of contacts

6, 8, 9

Technical data of the SERIES B

Temperature range -20 °C to 130 °C
Protection class IP 66/67 [plugged]

Electrical data power contacts

Max. rated current max. 28 A (6-pin)

max. 30 A (8/9-pin)

Rated voltage 630 V (AC/DC)
Test voltage (L-L) 6000 V

Resistance $< 3 \text{ m}\Omega$ Insertion cycles > 50

Electrical data signal 8 u.9 pin

Max. rated current 10 A

Rated voltage250 V (AC/DC)Test voltage (L-L)2500 VResistance< 5 mΩInsertion cycles> 50

Data according to VDE 0110/EN 61984, Clause 6.19.2.2

Degree of pollution 3

Over-voltage category III

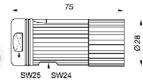
Max. height of operation 2000 m

Used materials

Housing Zinc die-casting/brass, nickel-plated *

Connection nut Brass, nickel-plated Insulation insert PA 6.6/PBT, UL 94/V0 Contacts Brass, gold-plated Seals FPM/HNBR
Clamping ring Brass, nickel-plated

*optional: stainless steel



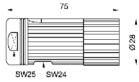
Signal plug 6 pin, nickel-plated Order no. MAT0179620

P-Type 6-pin

|6x HC-female crimping 2.0 mm, |Crimp area: crimp area: 0.35-2.5 mm²

9.5-14.5 mm

Metal construction, **EMC** shielding



Signal plug 8 pin, nickel-plated Order no.

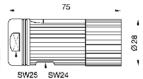
P-Type 8-pin

|4 x HC-female crimping 2.0 mm, | Crimp area: Crimp area: 0.35-2.5 mm² 4 x HC-female crimping 1,0 mm, Crimp area: 0.14-1.0 mm²

9.5-14.5 mm

Metal construction, EMC shielding

MAT0179621



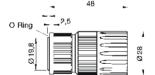
Signal plug 9 pin, nickel-plated Order no.

MAT0179622

P-Type 9-pin

|4 x HC-female crimping 2.0 mm, | Crimp area: crimp area: 0.35-2.5 mm² 5 x HC-female crimping 1.0 mm, crimp area: 0.14-1.0 mm²

9.5-14.5 mm


|Metal construction, EMC shielding

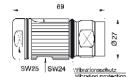
The straight signal receptacle is assembled with abovementioned contacts and insulation bodies. The technical specifications apply accordingly.

A cable clamp is not required by virtue of the design.

Lead-through,	Metal construction, axial seal
with connection nut Order no. 6 pin	
MAT0178406	C2
	02
Order no. 8 pin	
MAT0175661	C1+2
Order no. 9 pin	
MAT0179033	C1+2

Housing with SpeedTEC quick-release fastener ▶ page 413

igus® connectors SERIES B


according to Intercontec standard

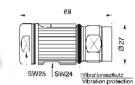
Power connector Size 1 [6, 8 and 9-pin]

Power extension 6 pin, nickel-plated Order no. MAT0179623

E-Type 6-pin

6 x crimping contact 2.0 mm, crimp area: 0.35-2.5 mm²

Crimp area: 9.5-14.5 mm Metal construction, EMC shielding



Power extension 8 pin, nickel-plated Order no.

E-Type 8-pin

4 x crimping contact 2.0 mm, crimp area: 0.35-2.5 mm² 4 x crimping contact 1.0 mm, crimp area: 0.14-1.0 mm²

Crimp area: 9.5-14.5 mm Metal construction, EMC shielding

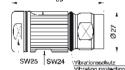
MAT0179624

Power extension 9 pin, nickel-plated Order no.

MAT0179625

E-Type

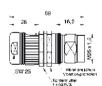
9-pin



Crimp area:

9.5-14.5 mm

Metal construction, EMC shielding


The extension with central attachment is assembed with the above-mentioned contacts, insulation bodies and cable clamp.

4 x crimping contact 2.0 mm,

5 x crimping contact 1.0 mm, crimp area: 0.14-1.0 mm²

crimp area: 0.35-2.5 mm²

The technical specifications apply accordingly.

Extension with central attachment Order no. 6 pin		Metal construction, EMC shielding
MAT0179626		C2/C3
Order no. 8 pin		
MAT0179627		C3
Order no. 9 pin		
MAT0179628		C9

Housing with SpeedTEC quick-release fastener ▶ page 413

SERIES M17

Connector

Tel. +49-2203-96 49-0 =ax +49-2203-96 49-222

igus[®] GmbH 51147 Köln, Germany

www.igus.eu info@igus.de

igus[®] connectors SERIES M17 according to Intercontec standard

Signal-und Power connector M17 signal [17-pin] and power connector [4 to 9-pin]

Types

- Connector, standard and push-pull version
- Extension, standard or with central attachment
- Installation box straight with flange
- Installation box straight, connecting thread M17 x 0,75
- Installation box angled, turnable with flange
- Installation box angled and turnable flexed with flange

Number of contacts

Signal: 17

Power: 4, 7, 9

Technical data of the M17 SERIES

Temperature range -20 °C to 130 °C Protection class IP 67 [plugged]

Electrical data signal 17 pin

 $\begin{array}{ll} \text{Max. rated current} & 3,6 \text{ A} \\ \text{Rated voltage} & 63 \text{ V (AC /DC)} \\ \text{Test voltage (L-L)} & 1500 \text{ V} \\ \text{Resistance} & < 15 \text{ m}\Omega \\ \text{Insertion cycles} & > 50 \end{array}$

Electrical data power

4 pin	7	pin
4 pin	7	piı

Max. rated current 2,5mm²: 20 A 1 mm²: 10 A 1,5 mm²: 14 A

Rated voltage 630 V (AC /DC) 630 V (AC /DC)

Test voltage (L-L) 6000 V 6000 V Resistance $< 5 \text{ m}\Omega$ $< 5 \text{ m}\Omega$ Insertion cycles > 50 > 50

Electrical data power 9 pin

Max. rated current Signal: 3,6 A Power: 14 A

Rated voltage Signal: 63 V [AC/DC] Power: 630 V [AC/DC]

Test voltage (L-L) Signal: 1500 V Power: 6000 V Resistance Signal: $< 15 \text{ m}\Omega$ Power: $< 5 \text{ m}\Omega$

Insertion cycles > 50

Data according to VDE 0110/EN 61984, Clause 6.19.2.2

Degree of pollution 3

Over-voltage category III

Max. height of operation 2000 m

Used materials

Housing Zinc die-casting/brass, nickel-plated
Insulation insert PBT, UL 94/V0
Seals FPM
Connection nut Brass, nickel-plated
Contacts Brass, gold-plated
Clamping ring Brass,nickel-plated

Housing with SpeedTEC quick-release fastener ▶ page 413

igus® connectors SERIES M17

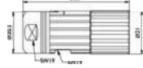
according to Intercontec standard

Signal-und Power connector M17 signal [17-pin] and power connector [4 to 9-pin]

Signal plug 17 pin, nickel-plated Order no. MAT0179639

P-Type 17-pin

Female crimping 0.6 mm, slitted crimp area: 0.14-0.5 mm² Crown clamp, crimp area: 9.5-12.0 mm


Metal construction. EMC shielding

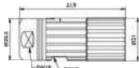
Signal plug 4 pin, nickel-plated Order no.

MAT0179641

P-Type 4-pin

Female crimping 1.5 mm, slitted crimp area: 0.35-2.5 mm²

Crown clamp. crimp area: 9.5-12.0 mm


Metal construction. EMC shielding

Signal plug 7 pin, nickel-plated Order no.

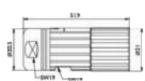
MAT0179643

P-Type 7-pin

HC-female crimping 1.0 mm, Crimp area: 0.5-1.5 mm²

Crown clamp, crimp area: 9.5-12.0 mm

Metal construction, EMC shielding



Signal plug 9 pin, nickel-plated Order no.

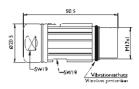
MAT0179645

P-Type 9-pin

4 x HC-female crimping 1.0 mm, | Crown clamp, Crimp area: 0.5-1.5 mm² 5 x female crimping 0.6 m, slitted crimp area: 0.14-0.5 mm²

crimp area: 9.5-12.0 mm Metal construction, EMC shielding

Housing with SpeedTEC quick-release fastener ▶ page 413


www.igus.eu/quickpin igus® QuickPin - Configure ReadyCable® online

Signal-und Power connector M17 signal [17-pin] and power connector [4 to 9-pin]

Signal extension 17 pin, nickel-plated Order no. MAT0179640

E-Type 17-pin

Crimping contact 0.6 mm, crimp area: 0.14-0.5 mm²

Crown clamp, crimp area: 9.5-12.0 mm

Metal construction. **EMC** shielding

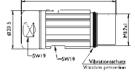
Power extension 4 pin, nickel-plated Order no.

MAT0179642

E-Type

E-Type

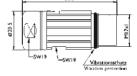
7-pin


4-pin

Crimping contact 1.5 mm, crimp area: 0.35-2.5 mm²

Crown clamp, Metal construction. crimp area: EMC shielding 9.5-12.0 mm

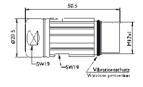
Power extension 7 pin, nickel-plated Order no.


MAT0179644

Crimping contact 1,0 mm, crimp area: 0.5-1.5 mm²

Crown clamp, crimp area: 9.5-12.0 mm

Metal construction, EMC shielding



Power extension 9 pin, nickel-plated Order no.

E-Type 9-pin

|4 x crimping contact 1.0 mm, Crimp area: 0.5-1.5 mm² 5 x crimping contact 0.6 mm Crimp area: 0.14-0.5 mm²

Crown clamp, crimp area: 9.5-12.0 mm

Metal construction, EMC shielding

MAT0179646

Housing with SpeedTEC quick-release fastener ▶ page 413

igus® connectors SERIES C according to Intercontec standard

Power connector Size 1,5 [6, 8 and 9-pin]

Types

- Connector, angular connector
- Extension
- Lead-through

- Installation box straight with flange
- Installation box angled and turnable flexed with flange

Number of contacts

6, 8, 9

Technical data of the SERIES C

Temperature range -20 °C to 130 °C Protection class IP 66/67 [plugged]

Electrical data power contacts

Max. rated current 75 A

Rated voltage 630 V (AC/DC) 6000 V Test voltage (L-L) Resistance $< 1 \, \text{m}\Omega$ Insertion cycles > 50

Electrical data signal contacts

Max. rated current 30 A

Rated voltage 630 V (AC/DC) 4000 V Test voltage (L-L) Resistance $< 3 \,\mathrm{m}\Omega$ Insertion cycles > 50

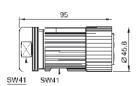
Data according to VDE 0110/EN 61984, Clause 6.19.2.2

Degree of pollution Over-voltage category Max. height of operation 2000 m

Used materials

Housing Magnesium die-casting/Aluminum

Connection nut Brass, nickel-plated Insulation insert PA 6.6/PBT, UL 94/V0 Brass, gold-plated Contacts FPM/HNBR Seals Brass, nickel-plated Clamping ring



Signal plug 6 pin, nickel-plated Order no.

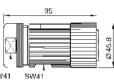
MAT0179629

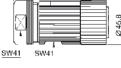
P-Type 6-pin

|4 x HC-female crimping 3.6 mm, | Crimp area: crimp area: 1.5-10.0 mm² 2 x HC-female crimping 2.0 mm, crimp area: 0.5-2.5 mm2

9,0-16,5 mm

Metal construction, **EMC** shielding





Signal plug 8 pin, nickel-plated Order no.

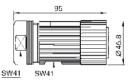
P-Type 8-pin

|4 x HC-female crimping 3.6 mm, | Crimp area: crimp area: 1.5-10.0 mm² 4 x HC-female crimping 2.0 mm, crimp area: 0.5-2.5 mm²

9.0-16.5 mm

Metal construction, EMC shielding

MAT0179630



Signal plug 9 pin, nickel-plated Order no.

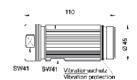
P-Type 9-pin

|4 x HC-female crimping 3.6 mm, | Crimp area: crimp area: 1.5-10.0 mm² 5 x HC-female crimping 2.0 mm, crimp area: 0.5-2.5 mm²

9.0-16.5 mm

Metal construction, EMC shielding

MAT0179631



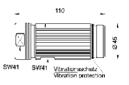
Power extension 6 pin, nickel-plated Order no.

E-Type 6-pin

|4 x crimping contact 3.6 mm, crimp area: 1.5-10.0 mm² 2 x crimping contact 2.0 mm, crimp area: 0.5-2.5 mm²

Crimp area: 9.0-16.5 mm Metal construction, EMC shielding

MAT0179632



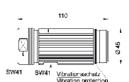
Power extension 8 pin, nickel-plated Order no.

E-Type 8-pin

4 x crimping contact 3.6 mm, crimp area: 1.5-10.0 mm² 4 x crimping contact 2.0 mm, crimp area: 0.5-2.5 mm²

Crimp area: 9.0-16.5 mm Metal construction, EMC shielding

MAT0179633



Power extension 9 pin, nickel-plated Order no.

E-Type 9-pin

4 x crimping contact 3.6 mm, crimp area: 1.5-10.0 mm² 5 x crimping contact 2.0 mm, crimp area: 0.5-2.5 mm²

Crimp area: 9.0-16.5 mm |Metal construction, **EMC** shielding

MAT0179634

INTERCONTEC

igus® connectors SERIES D

according to Intercontec standard

Power connector Size 3 [6 und 8-pin]

Types

- Connector
- Attension

- Installation box straight with flange
- Installation box angled with flange

Number of contacts

68

Technical data of the SERIES C

Electrical data power contacts

Mx.rated currentmax.150 ARited voltage6 \vee (\$\sqrt{p}\)Est voltage ()_600 \vee Psistance \oplus m\OmegaInsertion cycles> 50

Electrical data signal contacts

Max.rated current 12A

Red voltage 20 V (S/D)St voltage 11 4000 VSistance $5 \text{ m}\Omega$ Insertion cycles > 50

Data according to VDE 0110/EN 61984, Clause 6.19.2.2

Egree of pollution 3

@r-voltage category III

Ms.height of operation 200 m

Used materials

blusing Mik die-casting, nickel-plated

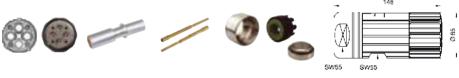
Connection nut Bass, nickel-plated

Insulation insert #3/19/V0

Contacts Bass, silver-/gold-plated

Seals **₹**

Clamping ring Aminium, nickel-plated



4 x female crimping 10.0 mm, crimping range: 10.0 mm²/AWG8
Signal:

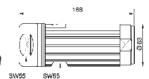
4 x female crimping 1.6 mm,

crimping range: 1.5 mm²

2 x female crimping 1.6 mm, crimping range: 1.5 mm²

crimp area: 17.0-36.0 mm

Crown clamp,


Metal construction, EMC shielding

MAT0179636

Power extension 6 pin, nickel-plated Order no.

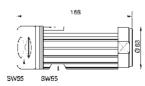
E-Type 6-pin

Power:
4 x crimping contact 10.0 mm crimping range:
10.0 mm²/AWG8

Signal:
2 x crimping contact 1.6 mm crimping range: 1.5 mm²

Crown clamp, crimp area: 17.0-36.0 mm

Metal construction, EMC shielding


MAT0179637

Power extension 8 pin, nickel-plated Order no.

E-Type 8-pin

Power: 4 x crimping contact 10.0 mm crimping range: 10.0 mm²/AWG8

Signal: 4 x crimping contact 1.6 mm crimping range: 1.5 mm²

Crown clamp Crimp area: 17.0-36.0 mm

Metal construction, EMC shielding

MAT0179638

igus® connectors SERIES S

according to Intercontec standard

Power connector Single-pin

Types

- Connector
- Extension

Installation box straight with flange

Number of contacts

• 1

Technical data of the SERIES S

Temperature range -20 °C to 130 °C Protection class IP 66/67 [plugged]

Electrical data of the SERIES S

 $\begin{array}{ll} \mbox{Rated voltage} & 630 \mbox{ V (AC/DC)} \\ \mbox{Test voltage (L-L)} & 8000 \mbox{ V} \\ \mbox{Resistance} & < 110 \mbox{ m}\Omega \\ \mbox{Insertion cycles} & > 50 \end{array}$

Max. rated current

for crimping range 10 mm²: 80 A for crimping range 16 mm²: 100 A for crimping range 25 mm²: 130 A for crimping range 35 mm²: 160 A for crimping range 50 mm²: 200 A

Data according to VDE 0110/EN 61984, Clause 6.19.2.2

Degree of pollution 3 [2]
Over-voltage category IV
Max. height of operation 2000 m

Used materials

Housing Zinc die-casting/brass, nickel-plated

Connection nut Brass, nickel-plated
Insulation insert PA 6.6mod., UL 94/V0
Contacts Brass, silver-plated

Seals FPM

Clamping ring Brass, nickel-plated

Connector – quick release fastener

crimping range: 10.0 mm²

long, 1 pin, nickel-plated

On request

The quick-release fastener SpeedTEC is available for the types plugs, extensions, straight mounting boxes and angled mounting boxes from the series A, B, C and M17.

axial seal

E10

The SpeedTEC connectors are sealed according to IP67 and conform to national and international certifications, including VDE, UL/CSA and CCC.

Please note:

SpeedTEC extensions and installation boxes are compatible with the available screw solutions.

However, the type SpeedTEC plug housing can only be connected with other SpeedTEC types.

INTERCONTEC

igus[®] tools, accessories according to Intercontec standard

Crimp pliers for SERIES A and B

Hand-Crimp pliers
for ∅ 1 mm contacts
till core cross section 1 mm²
complete with positioning insert
On request

Positioning insert for Ø 0.6 mm contacts

On request

MAT01710294

MAT0179467

Crimp pliers for SERIES M17

Hand-Crimp pliers for Ø 0.6 mm contacts till core cross section 0.5mm² complete with positioning insert On request

MAT0178919

Alternative crimp pliers for A or C

4-thorn crimp pliers for Ø 0.14mm² to 6.0mm² contacts

delivered with locator
On request

MAT01713970

Crimp pliers for SERIES A, B, C, D and M17

Hand-Crimp pliers

for Ø 1 mm contacts and Ø 2 mm contacts to core cross section 4 mm² inclusive positioning carrier

On request

MAT0175736

Positioning insert for Ø 1 mm contacts

On request MAT0178195

Positioning insert for Ø 2 mm contacts

On request MAT0178196

Positioning insert for Ø 1 mm and Ø 2 mm contacts

On request MAT0177855

Positioning insert for Ø 2 mm contacts

Positioning insert for Ø 1.5 mm contacts

Positioning insert for Ø 0.5-2.5 mm Contacts

for Ø 1.6 mm contacts

Positioning insert for Ø 1.6 mm contacts

On request On recommendation MAT01714573 MAT0

On request MAT01714574

On request MAT0178920

On request MAT0177853

Positioning insert

or & 1.0 min contac

On request MAT01714575

Crimp pliers for SERIES C

Hand-Crimp pliers for Ø 3.6 mm contacts till core cross section 16 mm² inclusive positioning carrier On request

Positioning insert for Ø 3.6 mm contacts

On request

MAT0179194 MAT0179195

Crimp pliers for SERIES C

Pneumatic Crimp pliers for Ø 3.6 mm and Ø 2.0 mm contacts Core cross section 1.5-16 mm² On request

Crimping insert for pneumatic crimp pliers

Contact Crimp area

On request

Pin Ø 2.0 mm Bush Ø 3.6 mm 1.5/2.5 mm²

1.5/2.5 mm² On request **Pin** Ø 3.6 mm Bush Ø 3.6 mm 4.0/6.0 mm²

On request

Pin Ø 3.6 mm Bush Ø 3.6 mm 10.0 mm²

On request

Pin Ø 3.6 mm Bush Ø 3.6 mm 16.0 mm²

On request

Locator for pneumatic crimp pliers

Contact

Crimp area

On request

Pin Ø 2.0 mm Bush Ø 2.0 mm 1.5/2.5 mm² 1.5/2.5 mm² On request

Pin Ø 3.6 mm Bush Ø 3.6 mm 1.5-10.0 mm²

On request

Pin Ø 3.6 mm Bush Ø 3.6 mm 1.5-16.0 mm²

On request

Crimping insert for SERIES S and D

Battery-powered Crimp pliers, B131-C

On request MAT0177854 Crimping insert up to 10 mm², 16 mm²

On request

MAT01713679

Crimping insert up to 25 mm²

On request

MAT01713678

Crimping insert up to 35 mm²

On request MAT01713677 Crimping insert up to 50 mm²

On request MAT01713676

igus® Cable glands HSK-K

Material Shaped packing Protection class PA V0 according to UL 94

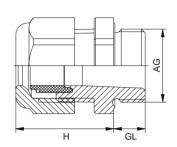
NBR

IP 68-10 bar / IP 69K

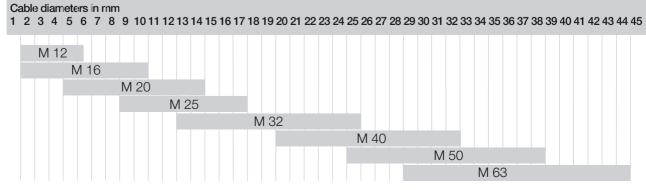
within the specified clamping range only

with optional O-Ring

Continuous operating temperature Colour


-40 °C-100 °C

RAL 7035 gray



AG	∜Øk mm	GL mm	H mm	mm	Pack Size	Part No. gray	Order No.
M 12 x 1.5	3 - 6.5	8	21	15	5	1.209.1200.50	MAT0179492
M 12 x 1.5	2 - 5	8	21	15	5	1.209.1200.51	MAT01712319
M 16 x 1.5	4 - 8	8	22	19	5	1.209.1600.50	MAT0179493
M 16 x 1.5	2 - 6	8	22	19	5	1.209.1600.51	MAT01712320
M 16 x 1.5	5 - 10	8	25	22	5	1.219.1600.50	MAT01712321
M 20 x 1.5	6 - 12	9	27	24	5	1.209.2000.50	MAT0179494
M 20 x 1.5	5 - 9	9	27	24	5	1.209.2000.51	MAT01712322
M 20 x 1.5	10 - 14	9	28	27	5	1.219.2000.50	MAT0179563
M 25 x 1.5	13 - 18	11	31	33	5	1.209.2500.50	MAT0179495
M 25 x 1.5	9 - 16	11	31	33	5	1.209.2500.51	MAT01712323
M 32 x 1.5	18 - 25	11	39	42	5	1.209.3200.50	MAT0179496
M 32 x 1.5	13 - 20	11	39	42	5	1.209.3200.51	MAT01712324
M 40 x 1.5	22 - 32	13	48	53	5	1.209.4000.50	MAT0179497
M 40 x 1.5	20 - 26	13	48	53	5	1.209.4000.51	MAT01712325
M 50 x 1.5	32 - 38	13	49	60	5	1.209.5000.50	MAT0179498
M 50 x 1.5	25 - 31	13	49	60	5	1.209.5000.51	MAT01712326
M 63 x 1.5	37 - 44	14	49	65 / 68	5	1.209.6300.50	MAT0179499
M 63 x 1.5	29 - 35	14	49	65 / 68	5	1.209.6300.51	MAT01712327

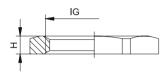
Request your personal savings offer.

Fax: +49-2203-9649-222

K-Counter nuts

igus

SERIES HSK-K


Material Continuous SB/PA

Continuous operating temperature

-20 °C-40 °C (SB)

Colour

-40 °C-100 °C (F gray RAL 7035

IG	H mm	mm	Pack Size	Part No.	Order No.
M 12 x 1.5	5	17	5	1.262.1200.50	MAT0179500
M 16 x 1.5	5	22	5	1.262.1600.50	MAT0179501
M 20 x 1.5	6	27	5	1.262.2000.50	MAT0179502
M 25 x 1.5	7	36	5	1.262.2500.50	MAT0179503
M 32 x 1.5	7	41	5	1.262.3200.50	MAT0179504
M 40 x 1.5	7	50	5	1.262.4000.50	MAT0179505
M 50 x 1.5	8	60	5	1.262.5000.50	MAT0179506
M 63 x 1.5	8	75	5	1.262.6300.50	MAT0179507

Request your personal savings offer.

Fax: +49-2203-9649-222

INTERCONT

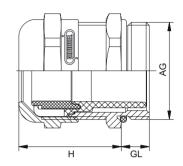
igus® Cable glands HSK-M

Material Brass, nickel-plated

Clamping insert PA
Shaped packing NBR
O-Ring NBR

Protection class IP 68-10 bar / IP 69K

within the specified clamping range only


Continuous operating

temperature -40 °C-100 °C

AG	∦Øk mm	GL mm	H mm	mm	Pack Size	Part No. gray	Order No.
M 12 x 1.5	3 - 6.5	6.5	19	14	5	1.609.1200.50	MAT0179476
M 12 x 1.5	2 - 5	6.5	19	14	5	1.609.1200.51	MAT01712328
M 16 x 1.5	4 - 8	6	21	17 / 19	5	1.609.1600.50	MAT0179477
M 16 x 1.5	2 - 6	6	21	17 / 19	5	1.609.1600.51	MAT01712329
M 16 x 1.5	5 - 10	6	22	20	5	1.609.1611.50	MAT01712330
M 20 x 1.5	6 - 12	6	23	22	5	1.609.2000.50	MAT0179478
M 20 x 1.5	5 - 9	6	23	22	5	1.609.2000.51	MAT01712331
M 20 x 1.5	10 - 14	6	24	24	5	1.609.2016.50	MAT0179562
M 25 x 1.5	13 - 18	7	26	30	5	1.609.2500.50	MAT0179479
M 25 x 1.5	9 - 16	7	26	30	5	1.609.2500.51	MAT01711769
M 32 x 1.5	18 - 25	8	31	40	5	1.609.3200.50	MAT0179480
M 32 x 1.5	13 - 20	8	31	40	5	1.609.3200.51	MAT01712332
M 40 x 1.5	22 - 32	8	37	50	5	1.609.4000.50	MAT0179481
M 40 x 1.5	20 - 26	8	37	50	5	1.609.4000.51	MAT01712333
M 50 x 1.5	32 - 38	9	37	57	5	1.609.5000.50	MAT0179482
M 50 x 1.5	25 - 31	9	37	57	5	1.609.5000.51	MAT01712334
M 63 x 1.5	37 - 44	10	38	64 / 68	5	1.609.6300.50	MAT0179483
M 63 x 1.5	29 - 35	10	38	64 / 68	5	1.609.6300.51	MAT01712335

Request your personal savings offer.

Fax: +49-2203-9649-222

Cable clameters in rnm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

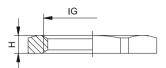
M 12

M 20

M 32

M 40

M 63


M-Counter nuts

igus®

SERIES HSK-M

Material

Brass, nickel-plated

IG	H mm	mm	Pack Size	Part No.	Order No.
M 12 x 1.5	2,8	15	5	1.161.1200.50	MAT0179484
M 16 x 1.5	2,8	19	5	1.161.1600.50	MAT0179485
M 20 x 1.5	3,0	23	5	1.161.2000.50	MAT0179486
M 25 x 1.5	3,5	29	5	1.161.2500.50	MAT0179487
M 32 x 1.5	4,0	36	5	1.161.3200.50	MAT0179488
M 40 x 1.5	4,5	45	5	1.161.4000.50	MAT0179489
M 50 x 1.5	5,5	55	5	1.161.5000.50	MAT0179490
M 63 x 1.5	6,0	70	5	1.161.6300.50	MAT0179491

Request your personal savings offer.

Fax: +49-2203-9649-222

Cable glands

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

igus[®] GmbH 51147 Köln, Germany

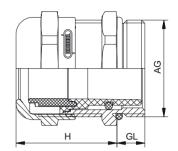
www.igus.eu info@igus.de

igus® Cable glands HSK-M-EMV

Material Brass, nickel-plated

Clamping insert Shaped packing **NBR O-Ring NBR**

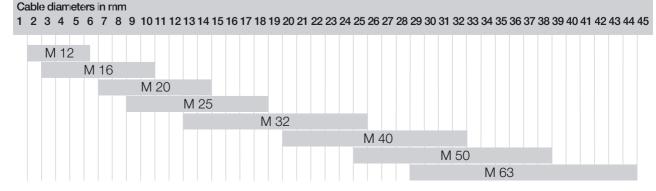
Protection class IP 68-10 bar / IP 69K


within the specified clamping range only

Continuous operating temperature

-40 °C-100 °C

AG	∜Øk mm	GL mm	H mm	mm	Pack Size	Part No. gray	Order No.
M 12 x 1.5	3 - 6.5	6.5	19	14	5	1.691.1200.50	MAT0179508
M 12 x 1.5	2 - 5	6.5	19	14	5	1.691.1200.51	MAT01712336
M 16 x 1.5	5 - 10	6	22	20	5	1.691.1600.50	MAT0179509
M 16 x 1.5	3 - 7	6	22	20	5	1.691.1600.51	MAT01712337
M 20 x 1.5	10 - 14	6	23	24	5	1.691.2000.50	MAT0179510
M 20 x 1.5	7 - 12	6	23	24	5	1.691.2000.51	MAT01712338
M 25 x 1.5	13 - 18	7	24	30	5	1.691.2500.50	MAT0179511
M 25 x 1.5	9 - 16	7	24	30	5	1.691.2500.51	MAT01712339
M 32 x 1.5	18 - 25	8	31	40	5	1.691.3200.50	MAT0179512
M 32 x 1.5	13 - 20	8	31	40	5	1.691.3200.51	MAT01712340
M 40 x 1.5	22 - 32	8	37	50	5	1.691.4000.50	MAT0179513
M 40 x 1.5	20 - 26	8	37	50	5	1.691.4000.51	MAT01712341
M 50 x 1.5	32 - 38	9	37	57	5	1.691.5000.50	MAT0179514
M 50 x 1.5	25 - 31	9	37	57	5	1.691.5000.51	MAT01712342
M 63 x 1.5	37 - 44	10	38	64 / 68	5	1.691.6300.50	MAT0179515
M 63 x 1.5	29 - 35	10	38	64 / 68	5	1.691.6300.51	MAT01712343


Request your personal savings offer.

Fax: +49-2203-9649-222

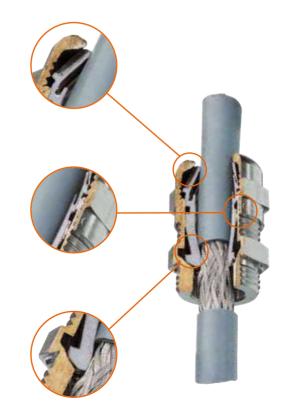
BK-EMV-hdustry standard

FAEM

Exible overlapping clamping splines prevent the form seal from being pulled out of the fitting.

The internal sealing edge results in a superior seal between the splined Mon clamping insert and the nickel plated brass body.

Retented 6° grounding due to the internal Ag, which results in a perfect contact between braided shield of cable and fitting.



EMEMAD

Fexible overlapping clamping splines prevent the form seal from being pulled out of the fitting.

Malized spline insert provides electrical conductivity.

Fexible contact points allow contact with variable braid diameters.

... no minimum order qantity

SRES EM EM4D

Cable glands

Tel. 48-2269639-0 Ex 48-2269639-222

igus® CabH 5766, Grmany

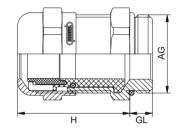
www.igus.eu info@us.de

igus® Cable glands HSK-M-EMV-D

Material Brass, nickel-plated Clamping insert Metal coated PA

Shaped packing **NBR O-Ring NBR**

Protection class IP 68-10 bar / IP 69K


within the specified clamping range only

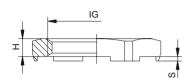
Continuous operating

temperature -40 °C-100 °C

AG	 	GL mm	H mm	mm	Pack Size	Part No. gray	Order No.	
M 12 x 1.5	3 - 6.5	6.5	25	14	5	1.631.1200.50	MAT0179524	
M 16 x 1.5	5 - 10	6	32	20	5	1.631.1600.50	MAT0179525	
M 20 x 1.5	10 - 14	6	33	24	5	1.631.2000.50	MAT0179526	
M 25 x 1.5	13 - 18	7	39	30	5	1.631.2500.50	MAT0179527	
M 32 x 1.5	18 - 25	8	45	40	5	1.631.3200.50	MAT0179528	
M 40 x 1.5	24 - 32	8	51	50	5	1.631.4000.50	MAT0179529	
M 50 x 1.5	32 - 38	9	57.5	57	5	1.631.5000.50	MAT0179530	
M 63 x 1.5	37 - 44	10	52	64 / 68	5	1.631.6300.50	MAT0179531	

Request your personal savings offer.

Fax: +49-2203-9649-222


Cable diameters in mm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 M 12 M 16 M 20 M 25 M 32 M 40 M 50 M 63

EMV-Counter nuts

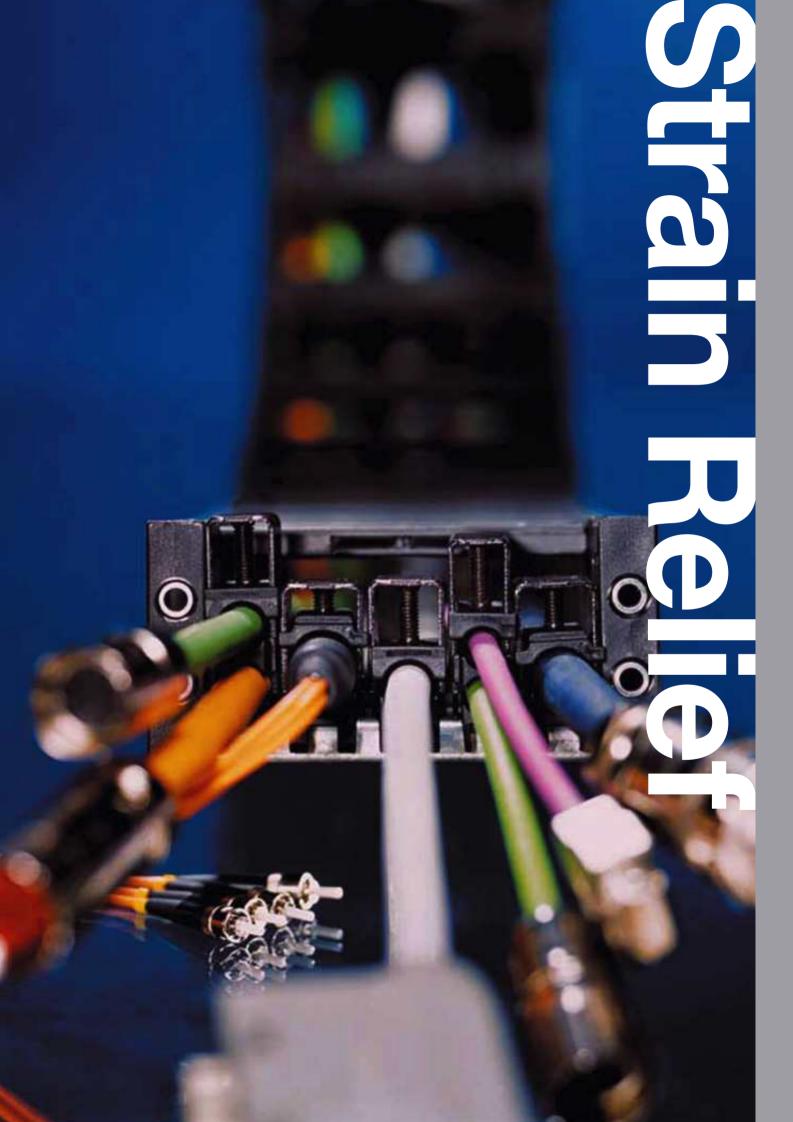
SERIES HSK-M-EMV-D

Material

Brass, nickel-plated

IG	H mm	∯ mm	S mm	Pack Size	Part No.	Order No.
M 12 x 1.5	2.8	15	0.7	5	1.167.1200.50	MAT0179516
M 16 x 1.5	2.8	19	0.7	5	1.167.1600.50	MAT0179517
M 20 x 1.5	3.0	24	0.7	5	1.167.2000.50	MAT0179518
M 25 x 1.5	3.5	30	0.7	5	1.167.2500.50	MAT0179519
M 32 x 1.5	4.5	36	0.7	5	1.167.3200.50	MAT0179520
M 40 x 1.5	5.0	46	0.7	5	1.167.4000.50	MAT0179521
M 50 x 1.5	5.0	60	0.7	5	1.167.5000.50	MAT0179522
M 63 x 1.5	6.0	70	0.7	5	1.167.6300.50	MAT0179523

Request your personal savings offer. Fax: +49-2203-9649-222


Cable glands

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

51147 Köln, Germany igus[®] GmbH

www.igus.eu info@igus.de

VAKAT

igus®

Overview Strain Relief System

Chainfix steel clamps and Chainfix stainless-steel clamps – Max. pull forces, adjustable with hexagon socket

▶ Page 428

Chainfix clips – High pull forces, plug-in Modular snap-on strain relief device

▶ Page 430

Chainfix Nugget – Strain relief for small space and cables up to 20 mm o.d.

▶ Page 432

Strain relief separator – With integrated teeth

▶ Page 432

Tiewrap plates - For cable tiewrap universal, bolted or clip-on

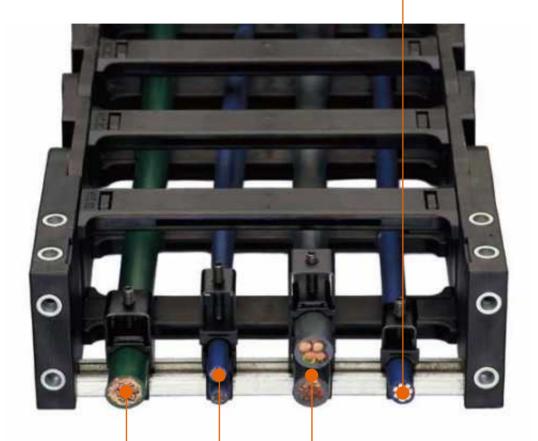
▶ Page 433

Chainfix-tiewrap plates – For strain relief with cable tiewraps for C-profile, clip-on

▶ Page 434

igus® **Blocks** – Special strain relief for hoses. A Modular, space-saving system

▶ Page 435



Reduced overall height

Space-saving

Long-term durability for dynamic application

Suitable for integration in the igus® connection element KMA (German abbr. = plastic-metal connection elements)

High tensile strength due to ribbed plastic troughs

For one cable, or for two or three cables on top of one another

Black painted or stainless steel from stock

igus®

Chainfix for Energy Chain Systems®

Strain relief devices for Energy Chains® with igus® strap clips and igus® press-fit elements

The principle of the strap clips has proved to be extremely reliable as a strain relief device for igus® Energy Chain Systems®.

Important improvements are characteristic features of the igus® own "Chainfix" product series:

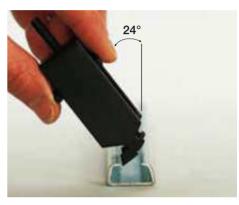
- igus® Chainfix reduces the overall height due to optimum housing height
- Long-term durability for dynamic applications due to improved press-fit elements.
- Suitability for integration in the KMA connection element.
 - Space-saving and time-saving assembly
 - Possibility of delivery for complete systems with cables and assembled strain relief device.
- Improved foot for facilitated installation on the C profile.

Ideally, the cables must be fastened at both ends of the Energy Chains®. The cables must, however, at least be fastened to the moving mounting bracket of the Energy Chains®.

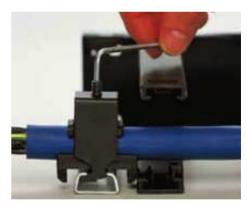
Characteristic features of the igus® Chainfix strap clips

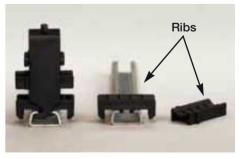
- Optimized height due to newly developed housing.
- Improved foot for facilitated installation on the C profile.
- Good visual effects due to black housing body and black threaded setscrews.
- Easy to assemble due to setscrews that are screwed using an Allen key.

Characteristic features of the igus® press-fit elements


- Long supporting surface improves the stability of the strap clip.
- High inherent rigidity increases the operating safety.
- Integrated ribs prevent the cable from detaching itself from the strain relief device.

Overall height


When the Energy Chains® glide along on themselves in the case of long distances of travel, the screw heads of the strain relief device at the fixed point of the chain must possess a separating distance of at least 10 mm to the top edge of the Energy Chains®. Our newly developed clip housing with setscrews **reduce the overall height** by as much as 15 mm compared with conventional strap clips.


KMA connection element with integrated C profile and Chainfix

Easy installation of the strap clip due to improved foot

Reduced overall height due to setscrew and optimum housing height

New pressure trough, mating trough and press trough with ribs for better long-termi durability

Chainfix test results

Three times higher tensile strength than with standard-type strap clips

1 Standard-type strap clip made of hot-galvanized steel, double trough and press trough made of impact-resistant plastic (Art. no. CF14.1.Z, standard elements)

2 Strap clip as described above, double trough and press trough made of igumid G (Art. no. CFY14.1)

3 Strap clip "Chainfix", mating trough and press trough made of igumid G (Art. no. CFX14.1)

Results: Strain relief element 1 saddle clamps loosen at 1.000 N of pull force. The resulting diagonal position of the saddle clamp distorts the screw. Strain relief element 2 saddle clamps loosen at 1.750 N of pull force. The improved igumid G saddle clamps attempt to hold the cable, causing the outer jacket to "peel." Strain relief element (igus® Chainfix system) 3 saddle clamps loosen and slant 5° at 1.750 N. At 2.500 N of pull force, the cable jacket bunches up behind the clamp and, at 3.500 N of pull force, the clamps loosen completely and the cable becomes inoperative.

Final result: The tensile strength of the strap clip "Chainfix" developed by igus® is three times higher than the tensile strength of standard-type strain relief devices.

Delivery program elements of the Chainfix strain relief devices:

 Chainfix strap clip with setscrew and press trough, double trough, mating trough

C profile

Materials: igus® strap clip: black painted steel ● Setscrew: black steel ● igus® strap clip stainless steel*: bare-metal, material 1.4301

● Setscrew: bare-metal, material 1.4301 ● Press trough, double trough and mating trough: igumid G

Tensile strength test example with cable Ø 10.5 mm

■ Tiewrap plate 2070ZB with a cable tiewrap

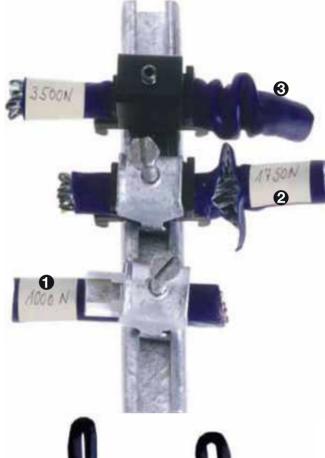
Result: Tensile strength 290 N Chainfix clip CFC-12-M

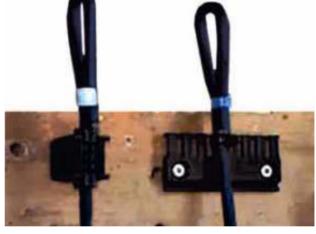
Result: Tensile strength 350 N

Pull force test for igus® tiewrap plates with cable tiewraps

Results: Two tiewraps are more stable than one tiewrap.

If one cable tiewrap is used, the breaking force is (approx.) 350 N. If the cable is secured with two cable tiewraps, the breaking force increases to 830 N, i.e. pull force resistance more than doubles when using two cable tiewraps.


Technical data:


■ Tiewrap plates: 2100.ZB/3100.ZB

Cable: CF1.07.12

Cable tiewraps: CFB.001

Strain relief devices

+49-2203-96 49-222 +49-2203-96 49-0

<u>--</u> Fax

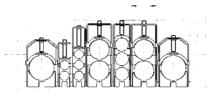
igus

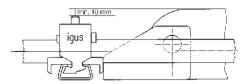
If the E-Chains® glide on themselves over long travels, the screw heads of the strain relief must be at least 10 mm away from the upper edge of the E-Chains® at the fixed end of the chain.

This restriction means that the strain relief elements described here may possibly not be able to be used on the fixed end of long E-Chains®.

Please note our clamps developed specifically for a low overall height. In the case of unsupported E-Chains®, the strain relief elements may be used with no problems.

Improved housing foot clamp for easy fit into profile rail




Setscrew and reduced optimal housing height for use in long/gliding travel applications

When using Chainfix clamps on C-Profile in the mounting bracket for Series 280, 2828, 290, 2928, R770, R7728 and a shortened mating trough must be used. The Part No. for this is: CFX...K (add letter "K" to the above Part No.)

igus® Chainfix Strain Relief

The dimensions given for H in the tables are based on the maximum cable diameter. The use of thinner cables can result in deviating dimensions.

Single clamp housing, including top/bottom saddle clamps

Steel clamp	Stainless ste	eel		
Part No.	Part No.	ø [mm]	В	Н
CFX12.1	CFX12.1.E	06 – 12	16	58
CFX14.1	CFX14.1.E	12 – 14	18	50
CFX16.1	CFX16.1.E	14 – 16	20	52
CFX18.1	CFX18.1.E	16 – 18	22	54
CFX20.1	CFX20.1.E	18 – 20	24	56
CFX22.1	CFX22.1.E	20 – 22	26	58
CFX26.1	CFX26.1.E	22 – 26	30	67
CFX30.1	CFX30.1.E	26 – 30	34	71
CFX34.1	CFX34.1.E	30 – 34	38	75
CFX38.1	CFX38.1.E	34 – 38	42	79
CFX42.1	CFX42.1.E	38 – 42	46	83

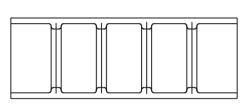
Double clamp housing, including top/bottom saddle clamps and one stacker saddle clamp

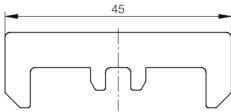
Steel	Stainless steel clamp				
Part No.	Part No.	ø [mm]	В	н	
CFX12.2	CFX12.2.E	06 – 12	16	72	
CFX14.2	CFX14.2.E	12 – 14	18	74	
CFX16.2	CFX16.2.E	14 – 16	20	78	
CFX18.2	CFX18.2.E	16 – 18	22	82	
CFX20.2	CFX20.2.E	18 – 20	24	86	
CFX22.2	CFX22.2.E	20 – 22	26	90	
CFX26.2	CFX26.2.E	22 – 26	30	109	
CFX30.2	CFX30.2.E	26 – 30	34	117	
CFX34.2	CFX34.2.E	30 – 34	38	125	

Triple clamp housing, including top/bottom saddle clamps and two stacker saddle clamps

Steel	Stainless steel				
clamp	clamp				
Part No.	Part No.	ø [mm]	В	Н	
CFX12.3	-	06 – 12	16	100	
CFX14.3	-	12 – 14	18	96	
CFX16.3	-	14 – 16	20	102	
CFX18.3	-	16 – 18	22	108	
CFX20.3	-	18 – 20	24	114	
CFX22.3	-	20 – 22	26	120	

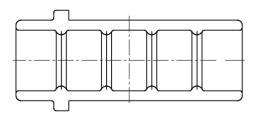
^{*} Material stainless steel: 1.4301


igus® Chainfix Strain Relief


igus

Bottom saddle clamps for single/double/triple clamp housings as separate part or insertion into C-profile

Part No.	ø [mm]
CG12	06 – 12
CG14	12 – 14
CG16	14 – 16
CG18	16 – 18
CG20	18 – 20
CG22	20 – 22
CG26	22 – 26
CG30	26 – 30
CG34	30 – 34
CG38	34 – 38
CG42	38 – 42



Stacker saddle clamps for double/triple clamp housings for placement between stacked cables

Part No.	ø [mm]
CD12	06 – 12
CD14	12 – 14
CD16	14 – 16
CD18	16 – 18
CD20	18 – 20
CD22	20 – 22
CD26	22 – 26
CD30	26 – 30
CD34	30 – 34

Chainfix

25

Stainless steel* C profile for all clamps, also for assembly in the KMA connection element Series: 280, 2828, 28, 380, 3838, 38, 400, 4040, 40, 140, 142 and 5050, 50, 150.

Part No. CF92.42E (specify length in mm)

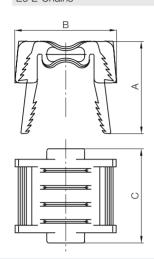
Material: stainless steel*

Ribbed strain relief saddle clamps withstands increased pull forces for long-term durability

igus

8

For the following E-Chains®:


Chainfix Clip for C-profile:

For all KMA mounting brackets with C-profile-option!

Chainfix Clip for crossbars:

For most E4 and

E6 E-Chains®

Chainfix - Snap on Solutions

Chainfix Clip - Modular snap-on strain relief device

Available for all igus® E-ChainSystems® with C-profiles and also suitable for assembly in the KMA mounting brackets and Clip-on strain relief for crossbars

Characteristic features: ■ Series of clamps and bottom parts made of plastic for cable diameters ranging from 4 mm to 24 mm ■ Quick assembly without any tools ■ 2 and 3 layers on top of one another possible ■ Each layer can be detached and changed later on ■ High tensile forces in case of single-layer installation, decreasing with the number of layers

ø Leitung	Part No.	Part No.	Α	В	С	
[mm]	Clamps	Bottom Part	[mm]	[mm]	[mm]	
04 - 08 mm	CFC-08-M	CFC-08-C	13.0	14.5	30	
08 - 12 mm	CFC-12-M	CFC-12-C	24.0	23.7	36	
12 - 16 mm	CFC-16-M	CFC-16-C	32.1	32.4	42	
16 - 20 mm	CFC-20-M	CFC-20-C	39.1	43.2	45	
20 - 24 mm	CFC-24-M	CFC-24-C	50.0	54.0	50	

For the following E-Chains®:

For all KMA mounting brackets with C-profile-option!

Chainfix Nugget

Characteristic features: ● Very small strain relief for the fixation of cables up to diameter of 20 mm ●
Use: ● Accessory for all KMA with integrated c-profile ● Easy to assemble, without any screws and

tools ● Adjustable to every E-Chain® filling ● Very small space requirement ● Easy strain relief due to fixation with pre-assembled cable strap

Part No.	ø Leitung max.	Breite
	[mm]	[mm]
CFN.20	20	10.8
	To the state of th	IGUS CHAINFLEX

For the following E-Chains®:

For more details see table!

Strain relief separator

Characteristic features:
Separator with integrated strain relief for the use in the first or last chain link

- Use: Individual part for the manufacturing of switchgear cabinets or for the assembly of machines
- Accessory for igus® E-ChainSystems® Easy to assemble without any screws

Part No.	Number	For Series
	of teeth	
T2103.Z	2	210
E6.29.02Z	2	E6.29
2020.Z	2	2400/2500
262.Z	3	2600/2700

Tiewrap plate

2020.ZB

2030.ZB

2040.ZB

2050.ZB

2070.ZB

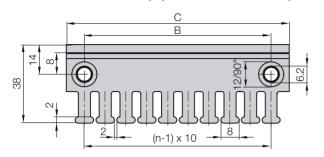
2100.ZB

2090.ZB (= 2030.ZB + 2040.ZB)

2125.ZB (= 2050.ZB + 2050.ZB)

Chainfix

Option 1: Chainfix tiewrap plates as individual parts


Characteristic features:

As individual component screwed on KMA (plastic metal mounting brackets)

◆ Can be plugged in the mounting brackets
 ◆ Use:
 ◆ Individual part for the manufacturing of switch-gear cabinets or for the assembly of machines
 ◆ Accessory for igus® E-ChainSystems®

Series 2000 - Tiewrap plate as individual part

n Number

of teeth

3

4

5

8

9

10

12

2	
Single tiewrap plate	
18 25	
Shown assembled	

18	
own assembled	
Center bore	
(- = no / + = yes)	
-	
-	
-	

Cable tiewraps	Width x length	Max.	Pull force resistance
(100-piece bag)	[mm]	Ø	
CFB 001	4.8 x 150	36	222 N

Dim. C

[mm]

30

40

50

60

80

90

100

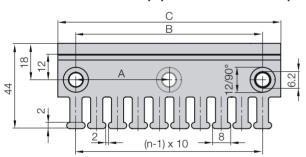
120

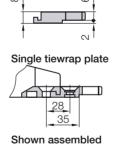
Dim. B

[mm]

15

20


30


40

60

80

Series 3000 - Tiewrap plate as individual part

of teeth [mm] [mm] (- = no / + = yes) 3050.ZB 05 - 50 30 - 3075.ZB 07 - 75 55 - 3100.ZB 10 - 100 80 - 3115.ZB 11 - 115 95 - 3125.ZB 12 - 125 105 -	c)
3075.ZB 07 - 75 55 - 3100.ZB 10 - 100 80 - 3115.ZB 11 - 115 95 -	ارد
3100.ZB 10 - 100 80 - 3115.ZB 11 - 115 95 -	
3115.ZB 11 – 115 95 –	
3125.ZB 12 – 125 105 –	
3150.ZB 15 – 150 130 –	
3175.ZB 17 – 175 155 –	
3200.ZB 20 90 200 180 +	
3225.ZB 22 102.5 225 205 +	
3250.ZB 25 115 250 230 +	

Cable tiewraps	Width x length	Max.	Pull force resistance
(100-piece bag)	[mm]	Ø	
CFB.001	4.8 x 150	36	222N

Easy

For the following E-Chains®:

Easy Chain® Series:

■ E200/Z200

System E2/000 Series:

- **2400/2500/2450**
- **2600/2700/2650**
- 255

System E4 Series:

220

For the following E-Chains®:

Easy Chain® Series:

- E26/Z26
- E300/Z300

System E2/000 Series:

- **2600/2700/2650**
- **3400/3500/3450**

System E4 Series:

- 280/290
- **380/390**
- **400/410**
- 2828/2928
- **3838/3938**
- 4040/4140
- **1640**

For the following E-Chains®:

For all mounting brackets with C-Profil-option

Chainfix Tiewrap Plates

Option 2: Tiewrap plates with clip-on connection for the C-profile

Characteristic features:

■ Can be plugged into the KMA c-profile

■ Easy solvable with screwdriver

- Easy to assemble without any screws. Easy solvable with screwdriver nevertheless safe stop Use:
- lacktriangle Individual part for the manufacturing of switchgear cabinets or for the assembly of machines lacktriangle Acces-
- sory for igus® E-ChainSystems® For all E-Chains® with KMA and integrated C-profile

Part No.	Width	Number	
	[mm]	of teeth	
3050.ZC	50	5	
3075.ZC	75	7	

For the following E-Chains®:

System E2/000 Series:

For more details see table!

Option 3: Clip-on tiewrap plates for opening or fixed crossbars

Characteristic features: ● Can be plugged on the fixed crossbars ● In case of many harnessed cables with strain relief "over two floors" ● If the KMA is too small for the c-profile ● Easy to assemble without any screws ● Use: ● Individual part for the manufacturing of switchgear cabinets or for the assembly of machines ● Accessory for igus® E-ChainSystems®

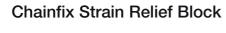
Part No.	Width	Number	For Series
fixed crossbar	[mm]	of teeth	
2050.Z	60	6	2600/2700
3050.Z	50	5	3400/3500
Part No.	Width	Number	For Series
opening crossbar	[mm]	of teeth	
3035.ZS	35	3	3400/3500
3050.ZS	50	5	3400/3500
3075.ZS	75	7	3400/3500
3850.ZS	48	5	2828/280/38/3838/380/E6.62/142/14240
4550.ZS	48	5	4040/400/50/5050/E6.80/140/14040/ 15050
4575.ZS	74	7	4040/400/50/5050/E6.80/140/14040/ 15050

For the following

E-Tubes:

System E2 Tubes Series:

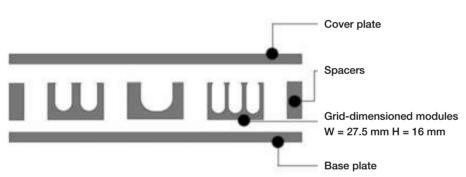
● R58 ● R68



Option 4: Integrated strain relief for E2 Tubes - Series R

Characteristic features: ● Strain relief disappears completely in the E-Tube ● Easy to assemble without any screws ● Use: ● Individual part for the manufacturing of switchgear cabinets or for the assembly of machines ● Accessory for igus® E-ChainSystems®

Part No.	Width	Number	For Series
	[mm]	of teeth	
3050.Z	50	6	R68
3075.Z	75	7	R68
5850.Z	47	4	R58



igus® Strain Relief Block for Small Hoses and Cables

- Modular system for great adaptability
- No hose damage
- Easy installation pressing the hose into the locating notch provides reliable fastening without hardware
- Hoses and cables can be installed together in the same E-Chain®
- Accommodation of hose diameters from 4.3 to 14 mm

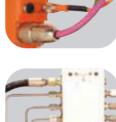
The Modular Elements of the igus® Strain Relief Block for Hoses

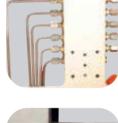
The modules accommodate hoses from 4.3 to 14 mm, 3 x 4.3 mm hoses can be fitted on top of each in module CFS 4.3 and 2 hoses can be fitted directly on top of each other in one notch using module CFS 6. The modules have a width of 27.5 mm, are inserted into the base plate and then fastened in position with M4 countersunk-head screws. The exception is module CFS 55.9 which offers the capacity for 5 x 9 mm hoses with twice the width. The base plate and cover plate are available in widths ranging from 75 to 240 mm. The height of the spacers and modules is 16 mm. Several layers can be installed directly above one another.

Part No.	Hose	Number	Width	
Strain Relief Block	Ø [mm]	of hoses	[mm]	
CFS 4.3	4.3	4 - 12	27.5	
CFS 6	6.0	3 - 6	27.5	
CFS 9	9.0	2	27.5	
CFS 55.9	9.0	5	55.0	
CFS 10	10.0	2	27.5	
CFS 14	14.0	1	27.5	

Part No.	Width
Base plate	[mm]
CFSU	75.0
CFSU	102.5
CFSU	130.0
CFSU	185.0
CFSU	212.0
CFSU	240.0
Part No.	Width
Spacer	Ø [mm]
CFSD	16.0
CFSD	12.0

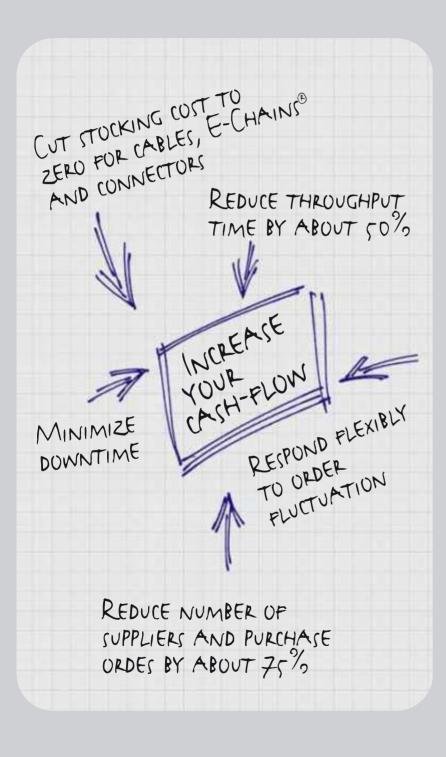
Part No.	Width	
Cover plate	[mm]	
CFSP	75.0	
CFSP	102.5	
CFSP	130.0	
CFSP	185.0	
CFSP	212.0	
CFSP	240.0	




VAKAT

ReadyChains® Ready-made Energy Chain Systems®

...all inclusive.



Increase cash flow

Increase your cash-flow easily and smoothly even from batch size 1.

Reduce storage costs for cables, Energy Chains® and plugs to zero

You can do without storage of high flexible cables, plugs and any other add-on pieces due to our rapid and guarantied delivery times.

Split in half flow times

Because of a polished logistic igus® delivers readymade systems almost worldwide within 2-8 days on the guarantied date.

React flexible to contract fluctuations

With ReadyChains® you are always prepared for cyclical ups and downs. In this field you can pass the buck of capacity fluctuations to us.

Minimize machine breakdown

Play it safe, it's the little things that always cause problems. Buying numerous single parts not only increases the risk of failure of your plants, it also complicates troubleshooting.

You will get a system solution with ReadyChains®. Any system is checked in our test centre. igus® is standardized according to ISO 9001.


Reduce the number of suppliers and orders about 75%

▶ One order ▶ one invoice ▶ one delivery ▶ one partner. Don't care about looking for numerous parts from numerous suppliers. We have the knowledge to provide you quickly with the optimal parts.

Degree of harnessing

You determine the degree of harnessing

We harness from simple Energy Chain Systems® with inserted Chainflex® cables to complex systems. These systems may include all cables and hoses (pneumatic, hydraulic), patch plugs, inner partitions, connecting elements and connecting parts as requested.

Any size is possible

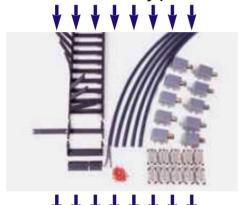
You determine the size

Any size is possible. Because of our up-todate production processes we can deliver fast and cheap custom-build or serial production products.

Choosing the travel

You determine the travel

ReadyChains® offers the whole spectrum of possible travels of the igus® Energy Chains®. We harness anything from extremely short to long travels. Safe transportation guarantees damage-free delivery of all lengths.



igus® ReadyChain®

Increase cash-flow, reduce ordering and flow times

Component part solution

Order, component parts Different suppliers Different delivery periods

Goods received, structural c omponents

Transport to machines, assembly and fitting of the component parts

ReadyChain®-solution

Chain, cable, harnessing Ordering the structural component with an article number

Goods received, structural component

Transport to the machine and assembly - "ready for occupation"

modifications, delivered to the hydraulic hoses and fittings. belt with three days of leading time.

Textile machine, more than 50 Building machines, harnessed

assembling from the roll.

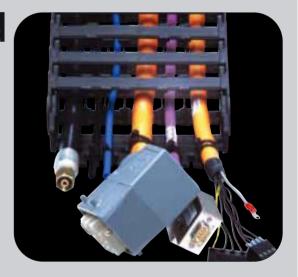
Crane travel up to 100 m, Robots, inclusive media hoses and add-on pieces.


ReadyChain® delivery times

ReadyChain® Basic

Consists of igus® Energy Chains® with inserted igus® Chainflex® cables and all necessary components such as separators and connecting elements

Time of delivery: 1 – 3 days


(after telephonic clarification)

ReadyChain® Standard

Consists of "basic", additionally with all patch plugs and connecting elements for igus® Energy Chains® and igus® Chainflex® cables.

Time of delivery: 3 - 5 days

ReadyChain® Premium

Consists of "standard", additionally with all patch plugs and connecting elements for igus® cables, especially designed for the interface of the machine.

Time of delivery: 3 - 10 days

ReadyChain Factory

Longstanding experience with harnessing of Energy Chains®

igus® Factory in Cologne:
Harnessing of Energy Chains® since 1994

All-automatic crimp machines guarantee safe connections, rationally connected

Computer-aided high-voltage testing positions ensure tested quality

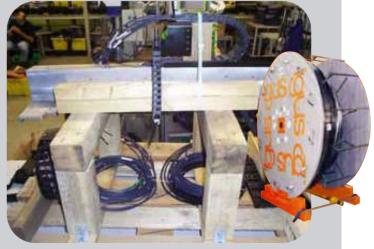
Non-spinning cable handling for more safety

The all-automatic break down facility allows cheap prices for highest quality

ReadyChain® Factory

For our customers: follow-up of order by web cam

More than 50 ReadyChain® specialists use up-to-date machines for quick planning, harnessing and final inspection of your ReadyChain® Energy Chain System®. Go and see for yourself: www.readychain.eu


70.000 Energy Chain® components on stock

More than 850 Chainflex® Special cables for Energy Chains® are available for you ex stock: www.chainflex.eu

More than 2.500 electrical components for patch plugs - available right away from the all-automatic high-bay warehouse

Many thousand on time deliveries in customer specific transport facilities

Applications

Examples for successful applications with ReadyChain®

igus® ReadyChain® used for GEORG disposal vehicle tested quality among hard conditions

igus® ReadyChain® used for travel axles for 6-axles robots – standard filling with additional options

igus® ReadyChain® for plastic processing machines – perfect filling for high service life

igus® ReadyChain® with industry patch plugs – faster starting-up, simple assembling

igus® ReadyChain® used for a zigzag application of an illumination cross arm, Royal Opera, London

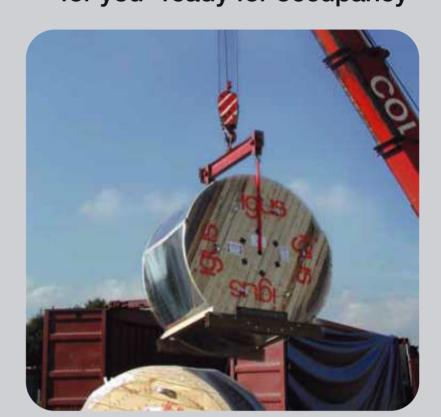
igus® ReadyChain® used for terotechnology – serial applications with different travels

Assembly

At home or abroad – igus® assembles the ReadyChains®

The larger the building site, the more inscru
for you "ready for occupancy"

The larger the building site, the more inscrutable is the team play of general businessman, subcontractors, erectors of industrial plants and individual craftsman which are participating to provide the overall performance. Today the installation of an Energy Chain System® for the use of high-grade plants often need more than 100 m travel and/or masses of several tons.


The following factors rapidly increase costs of the plant to non-calculated amounts:

- Replacement of parts
- Additional costs for assembly
- Costly waiting period
- Deadline pressure for follow-up work
- Loss of production in case of exceeding deadlines

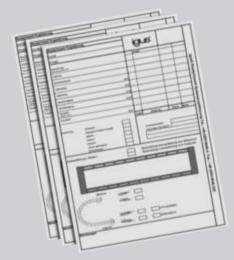
To contribute to the increasing complexity of the installation we lately offer assembly and pre-harnessing.

As a system supplier we can yield all necessary performances until starting up from the first to the last maneuverable point. Only the electrical connection and the involved entire starting up need to be done by a technical engineer.

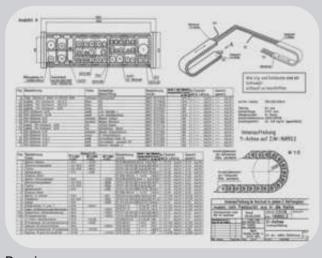
Ask for "ready for occupancy" Energy Chain Systems[®] at igus[®].

igus® ReadyChains® ready to assemble "from the roll"

Treasure Island Energy Chain Systems® under water with on-site assembly


Planning

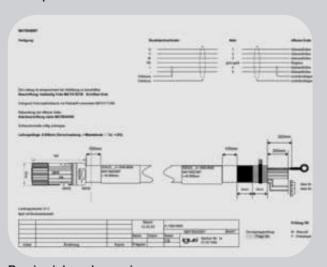
Reduce your planning expenses


Reduce your planning expenses. We relieve you from as much work as possible. Our trained staff will step by step support a smooth realization of your ReadyChain® project.

We can answer many of your questions already on the Telephone and demonstrate all advantages of ReadyChain® for your business Tel. +49-2203-96 49-0

We collect on-site all necessary data for the purpose of precise planning expenses. At the same time we go into your specific application.

Planning with well thought-out forms and special software


Drawing up detailed design worksheets

igus® staff at the "on-site inspection" of a plant

We can submit a complex offer within a week

Precise job and grouping of cables planning for each cable

Chainflex®

Page

Technical Data and Schedules/user information/contact

Designing with igus®	
Cables and Hoses – General rules for cables and hoses in Energy Chains®	450
Cables and Hoses - Separation in Energy Chains®	451
Cables and Hoses - Further information on the separation of cables	452
Electrical Round Cables	453
Electrical Round Cables - Information on assembly and strain relief of electrical round cables	454
Pneumatic hoses	455
Data and Schedules	
DIN 47100 colour code/Copper wire dimensions according to Anglo-American AWG numbers	456
Calculation of the copper surcharge	456
Load-Carrying Capacity of Cables	457
Electrotechnical data	458
Chemical resistance	464
Informations	
The General Conditions	466
User information, Disclaimer, KTG, Product illustrations	466
Technical notes	466
Approbation and Approvals	467
Configure and order cables online, igus® & eplan	468
More igus [®] products	470
igus [®] at www.igus.eu	471
Table of contents according to part number	472
According to industries	478
Previous product numbers CF211/CF11.D	482
Contact igus®	
Fax – Customer-specific cables for Energy Chain Systems®	484
Fax – System Planning	485
Fax – Harnessing	486
Fax - Order	487
igus [®] worldwide	492
Give us your oppinion – Catalogue improvement	
Definition of the icons used in the catalogue	Cover (back)
Chainflex® cables classification	Cover (ahead)

Rules for:

- Maximum cable diameter
- Separation
- Bending radius

Complete the fax form on page 486 of the catalog – and receive your finished project suggestion in a few hours!

Electrical cables require at least 10% of reserve space "all-round", hydraulic hoses 20%

The maximum cable diameter is specified for each series in the relevant chapter

Designing the Filling Cables and Hoses

General rules for cables and hoses in Energy Chains®

Data and energy supply in all forms - in an Energy Chain System®

That is the big advantage of an igus® Energy Chain System®: You can safely accommodate many different forms of data cables and energy carriers in a system. It remains up to you, however, to decide how strictly you want to apply your rules to separating and subdividing various media. You can, for example, comply with the minimum separating distances between bus cables and power cables and mix any pneumatic, electrical and hydraulic systems.

In addition to the quality of the cables being used, the arrangement of a cable within a chain as well as the space conditions. Many different separation variants make it possible to adapt the Energy Chains® to suit the specific requirements of each application. Generalized rules such as "No more than 80% of the clear space of Energy Chains® is allowed to be used" no longer make sense given the complexity of present-day applications. In this chapter, we will attempt to give you detailed recommendations. Due to the large number of application variants, we recommend that you use our free planning service in any case. Specify your requested cables - or also only the demanded electrical or other output data - and you will then receive the recommendation we have worked out for you.

Fax form on page 486 + Internet questionnaire at www.igus.eu or simply give us a telephone call. Within a few hours, you will be holding a detailed system suggestion in your hands.

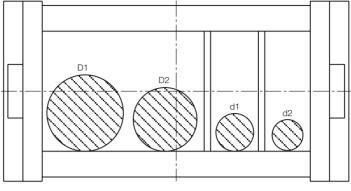
Maximum cable diameter

The maximum cable diameter corresponds to the clear height of the selected Energy Chains®/energy tubes minus the reserve space. This minimum reserve space, for example, amounts to 10% for electrical round cables, and 20% for hydraulic hoses. Energy Chains® are ideally filled when a lateral minimum separating distance to the next cable or wall is provided. Depending on the structure of the cables and the dynamics and the service life, extra reserve space must be provided in addition. In cases of exception, the filling can also be designed to meet more confined space requirements.

Please discuss this subject with us.

Hydraulic and electrical systems (in closed section) are separated from one other in this example.

Perfectly installed cables with igus[®] interior separation



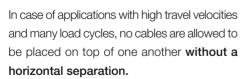
Separation in Energy Chains®

- Cables with extremely varying diameters should be installed so that they are separated from one another. The separation is provided by means of separators.
- Cables must never have the possibility of being able to push themselves over one another. This is why the clear height of a compartment with several equally thick cables lying next to one another must never amount to more than the cable diameter plus 50%.

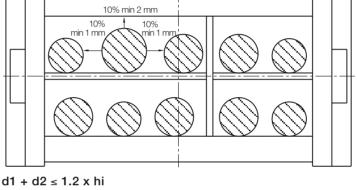
D1 + D2 > 1.2 x hi $d1 + d2 \le 1.2 x hi$

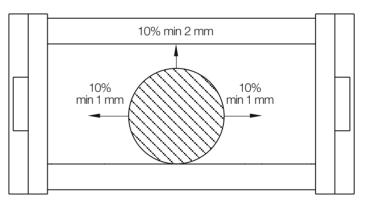
Expressed in rules, this means:

Rule 1:


If D1 + D2 > 1.2 x chain inner height, no separation must be made between the two cables. Two cables should never be allowed to lie on top of one another in unquided form or become tangled.

If d1 + d2 ≤ 1.2 x chain inner height, a separator or a modular compartment bottom must be installed in order to reduce the inner height. This is done in order to prevent d1 and d2 from becoming "mixed up".


The cables must be installed and fastened so that they can move freely in longitudinal direction at any time and do not exert any tensile force in the radius on the Energy Chains®.



The guidance values for these applications are:

Travel velocity exceeding 0.5 m/s and load cycles exceeding 10.000 p.a.

The igus® interior separation offers a reliable solution for these applications.

Reserve space "all-round" for electrical round cables

Reserve space capacities in % for various cables

Cables	Reserve space
	"all-round"
Electrical round cables	10 %
Electrical flat cables	10 %
Pneumatics	5-10%
Hydraulics	20 %
Media hoses	15-20%

Designing the Filling Cables and Hoses

Further information on the separation of cables

- The cable weight should be distributed symmetrically across the width of the chain.
- In the case of cables with different external jackets, it is important to make sure that they do not become "stuck together". If appropriate, they may have to be installed separately. igus® Chainflex® cables of all the series can be combined with one another.
- The cables should always be fastened with a strain relief device at the fixed end and at the moving end. Exceptions are only to be found in the case of some hydraulic hoses with length compensation or in the case of other high-pressure hoses. (see "Hydraulic hoses")
- Generally speaking, the following applies: The faster and more frequently the Energy Chains® travel, the more important the precise assignment of the cables in the chain will be. Due to the large number of variants, we will gladly advise you with your specific application.

ments for interior separation known today

The igus® kit of Energy Chain Systems® solves all the require-

igus® Chainflex® cables also allow for minimum bending radii of 5 x d together with millions of strokes.

Bending radius R

- The bending radius of your Energy Chains® is a factor of the "thickest" or "stiffest" cable or hose in your filling.
- The bending radius of the Energy Chains® should be adapted to suit the recommendations of the cable manufacturer. The selection of bending radius grater than the minimum bending radius has a positive effect on the service life to be expected.
- The specification of minimum bending radii in the case of cables applies to service use at normal temperatures. The use of other bending radii may therefore be advisable. Please ask your cable supplier.

The igus® product range offers up to 12 different bending radii for each chain series from stock. Here series 50 in the Storebaelt bridge project.

We will be glad to give you our recommendations for a complete Energy Chain System®. The bending radii of all cables and hoses, interior separation and service life are then perfectly adapted to suit one another in the best possible way. Also ask us about the igus® system guarantee. ► Harnessing, from page 437 onwards

Electrical round cables


Designing the Filling Electrical Round Cables

In the case of electrical cables, the round cable is a reliable, modular and low-cost solution for Energy Chain Systems®. For your purchase, we recommend that you consider the following criteria:

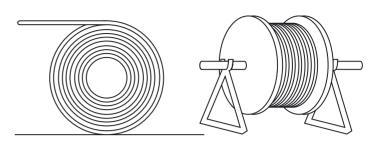
Selection criteria:

- Small minimum bending radii and mounting heights
- Service life with minimum bending radius
- Service life for your application case, e.g. short or long distance of travel or suspended installation use
- Test values for the service life based on practice-oriented experiments
- Uncomplicated handling during assembly, e.g. no detaching, laying out, etc.
- Strain relief device on the connection element should be possible
- Bending-resistant shields in the case of shielded cables
- Abrasion-resistant, readily gliding external jackets
- Large selection in order to avoid expensive production of single products

In the case of bus cables and fibre-optic cables, it is especially important to consider how well the transmission rates and the shielding effects are maintained after several million strokes in the minimum bending radius.

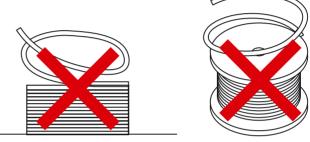
Example igus® experimental laboratory: constant development and testing of Chainflex® electrical round cables

igus®

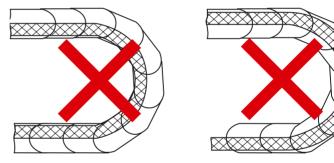

Designing the Filling Electrical round cables

Information on assembly and strain relief of electrical round cables

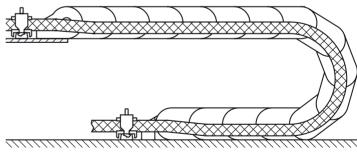
- The cables must be installed twist-free.
 Drums or rings are not allowed to be pulled off across the top. igus® Chainflex® cables are ready to be laid immediately.
 They do not need to be detached or laid out prior to the assembly procedure.
- 2. The cables must be laid so that each individual cable can move freely in longitudinal direction.
- The cables must be able to move freely in the radius. This must be checked when the upper section reaches the biggest clear length.
- 4. The separation of the interior space by means of separators or by means of the igus® interior separation system is required whenever several or many cables with different diameters are being installed. It is important to make sure that the cables cannot wrap themselves around one another in spiral form.
- 5. In the case of cables with different external jackets, it is important to make sure that they do not become "stuck together". If appropriate, they may need to be separated. igus® Chainflex® cables of all the series can be combined with one another.
- 6. Electrical round cables must be fastened in strain-relieved form on both sides. In cases of exception, the cables must at least be fastened in strain-relieved form at the moving end of the Energy Chains®. A separating distance of 10-30 x cable diameter is recommended for most cables. Chainflex® cables, however, can be strain-relieved directly at the connection element, as confirmed by many series of tests.


We will be glad to make you an offer on our ready-made Energy Chain Systems[®]: "igus[®] 3-K triple offer: chain, cable, harnessing".

► Harnessing, from page 437 onwards



Correct!


Wrong!

Wrong!

Cables must be able to move freely in the radius

Chainflex® cables can be strain-relieved directly at the connection element.

Corkscrewing: An imperfectly matched system can result in these failures.

Pneumatic hoses

Design Information

Basically, the same rules that apply to round cables also apply to pneumatic hoses. In practice, however, it can be seen that pneumatic hoses are less susceptible to malfunctions. Following proper consultation, they can also be laid to meet more confined space requirements than is provided for by the "10% reserve space all-round" rule. A strain relief device on both sides is usually the case here as well. In the case of pneumatic hoses made of rubber, we recommend strict compliance with the "10% reserve space" rule because these hoses tend to become "stuck together" among one another or with other cables.

Completely ready-made Energy Chain System® with several pneumatic hoses next to and on top of one another.

The igus® product range also offers thermoplastic pneumatic hoses "Chainflex® CFAIR". ► Page 206

Special Cables Information Colour Code + Copper Price

DIN 47100 colour code (however, deviating from DIN: without colour repetition after 44th core)*

1 white	17 white-gray	33 green-red	49 white-green-black
2 brown	18 gray-brown	34 yellow-red	50 brown-green-black
3 green	19 white-pink	35 green-black	51 white-yellow-black
4 yellow	20 pink-brown	36 yellow-black	52 yellow-brown-black
5 gray	21 white-blue	37 gray-blue	53 white-gray-black
6 pink	22 brown-blue	38 pink-blue	54 gray-brown-black
7 blue	23 white-red	39 gray-red	55 white-pink-black
8 red	24 brown-red	40 pink-red	56 pink-brown-black
9 black	25 white-black	41 gray-black	57 white-blue-black
10 violet	26 brown-black	42 pink-black	58 brown-blue-black
11 gray-pink	27 gray-green	43 blue-black	59 white-red-black
12 red-blue	28 yellow-gray	44 red-black	60 brown-red-black
13 white-green	29 pink-green	45 white-brown-black	61 black-white
14 brown-green	30 yellow-pink	46 yellow-green-black	
15 white-yellow	31 green-blue	47 gray-pink-black	
16 yellow-brown	32 yellow-blue	48 red-blue-black	

^{*} Exception: 4-core cables are braided in the colour sequence white, green, brown, yellow.

The first colour indicates the basic colour of the core insulation, and the second colour indicates the colour of the printedon ring. In the case of three colours, the second and colours are printed on the basic colour.

Calculation of the copper surcharge

The copper surcharge is the calculation of the difference between the calculated price (copper basis) and the fluctuating, actual price of the copper share in a cable. In calculatory terms, the list price of each Chainflex® cable is based on a copper price to the amount of € 150,-/100 kg of copper. In the end, however, this copper share is calculated on the basis of the current daily price according to the DEL (German abbr. = German electrolyte copper for conducting purposes) quotation.

The copper index specifies the weight of the copper share in a cable in kg/km. The product from the copper index (kg/km) and the price difference per kg of copper according to the DEL quotation then provides the copper surcharge in \in per km of cable.

Here, the following example:

Cable: Chainflex® CF9.15.18

Copper index: 260 kg/km

DEL quotation: € 189,-/100 kg Cu Copper basis: € 150,-/100 kg Cu

Copper index [kg/km] x
$$\frac{\text{DEL quotation } [€/100 \text{ kg}] - \text{Copper basis } [€/100 \text{ kg}]}{100}$$
 = Copper surcharge [€/km]
260 x $\frac{189 - 150}{100}$ = Copper surcharge [€/km]

Copper surcharge = 101.40 €/km

For this example, the copper surcharge amounts to € 101.40/km of cable. Any discounts that are granted only apply to the cable prices but not to the copper surcharge. The copper surcharge is shown separately on our invoices.

New: You now have the possibility of calculating the individual extra charge for copper for your cable on-line www.igus.eu/en/cfcu

Copper wire dimensions according to Anglo-American AWG numbers

AWG	Diameter	Cross section	AWG	Diameter	Cross section
No.	mm	mm²	No.	mm	mm²
500	17.96	253.00	18	1.024	0.823
350	15.03	177.00	20	0.813	0.519
250	12.70	127.00	22	0.643	0.324
4/0	11.88	107.20	24	0.511	0.205
3/0	10.40	85.00	26	0.405	0.128
2/0	9.27	67.50	28	0.320	0.0804
1/0	8.25	53.50	30	0.255	0.0507
1	7.35	42.40	32	0.203	0.0324
2	6.54	33.60	34	0.160	0.0200
4	5.19	21.20	36	0.127	0.0127
6	4.12	13.30	38	0.102	0.00811
8	3.26	8.37	40	0.079	0.00487
10	2.59	5.26	42	0.064	0.00317
12	2.05	3.31	44	0.051	0.00203
14	1.63	2.08			
16	1.29	1.31			

Special Cables Information Load-Carrying Capacity of Cables

The values from the tables on the side of this page have been taken from the standard DIN VDE 0298, Part 4. These values have been simplified and only apply approximately. For each user, it is advisable to obtain and comply with the regulations that apply to each individual case of application (e.g. measures for protection in case of indirect contact in accordance with DIN VDE 0100 Part 410, overcurrent protective devices in accordance with DIN VDE 0100 Part 430 or voltage drop in accordance with DIN VDE 0100 Part 520). It is not possible to provide all the regulations or overviews in this catalog. Due to the harmonization that has been carried out, it is possible that different load-carrying values may be permissible for the same cable in some cases. For the selection of the relevant cross sections, the load capacity in undisturbed operation is the determining factor, i.e. the use with permissible operating temperature or permissible maximum temperature on the conductor.

The load-bearing capacity according to Table 1 on this page applies to operating-current-carrying conductors. Normally, these are 2 loaded conductors in the case of 2-core and 3-core cables, as well as 3 loaded conductors in the case of 4-core and 5-core cables. Please take this into account when planning for the use of multi-core cables in electrical installation conduits or Energy Chains®. This information is based on an ambient temperature of 30°C and a non-loaded cable. Please apply the conversion factors according to Table 2 in case the air temperature is increased due to the heat loss of the cables (please take thermal radiation into account as well, e.g. effects of exposure to the sun).

The possible cable installation types in Energy Chains® result in such a broad range of loading profiles that no generalized conversion factors can be mentioned for this large accumulation of cables. The installation type and the conversion factors must be looked up in Table 3 according to each individual application.

Table 3: Conversion factors for multi-core cables with cable cross sections up to 10 mm²

Loaded cores	Conversion factor
5	0.75
7	0.65
10	0.55
14	0.50
19	0.45
24	0.40
40	0.35
61	0.30

Table 1: Cables for fixed installation in energy-conducting chains and tubes

	TPE
CF130.UL, CF5, CF140.UL,CF6, CF7, CF8, CF2, CF7.D, CF240, CF211 (Data)	CF130.UL, CF140.UL, CF170.D, CF180, CF9, CF10, CF9.UL, CF10.UL, CF98, CF99, CF11, CF12, CF21.UL, CF260, CF27.D, CF30, CF31, CF34, CF35, CF300, CF300, CFPE, CFPE, CF310, CF310, CF Braid, CF ROBOT, CF77.UL.D, CF78.UL
2 or 3	2 or 3
	CF140.UL,CF6, CF7, CF8, CF2, CF7.D, CF240, CF211 (Data)

Nominal cross of copper cable in	tion Load-carrying o PVC insulation	apacity in amperes TPE insulation
mm²		
0.14	2.5	2.5
0.25	4	5
0.34	5	7
0.50	8	10
0.75	12	14
1	15	17
1.50	18	21
2.50	26	30
4	34	41
6	44	53
10	61	74
16	82	99
25	108	131
35	135	162
50	168	202
70	207	250
95	250	301
120	292	352
150		404
185		461

Table 2: Conversion factors in case of varying ambient temperatures

Ambient PVC TPE temperature °C insulation insulation	
temperature °C insulation insulation	
10 1.22 1.15	
15 1.17 1.12	
20 1.12 1.08	
25 1.06 1.04	
30 1.00 1.00	
35 0.94 0.96	
40 0.87 0.91	
45 0.79 0.87	
50 0.71 0.82	
55 0.61 0.76	
60 0.50 0.71	
65 – 0.65	
70 – 0.58	
75 – 0.50	
80 – 0.41	
85 – 0.29	
90 – 0.14	

The following tables provide measured values on the electrotechnical data of the cables available at the time of the survey. The values are understood as being approximate values. For precise information on the actually available cables, individual measurements are absolutely required.

The specification of the characteristic wave impedance at high frequencies in Ω is an important quantity for a reflection-free matching of cables, e.g. in bus systems. With respect to the combination of various cables types and lengths, an adaptation must be provided via a matching resistor.

Cable type CF130.UL, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Loop capacitance up to 7 cores in nF/km approx.			120	105	110	125	125	140		140		
Loop capacitance from 12 cores in nF/km approx.				65	65	90						
Loop inductance in µH/km approx.			635	650	640	620	610	610		565		
Characteristic wave impedance at 1 kHz in Ω			80	90	90	80	80	70		65		
Capacitance: 2 cores versus all others up to 7 cores in nF/km approx.				150	190	190	205	210		230		
Capacitance: 2 cores versus all others up to 12 cores in nF/km approx.				150			205					
Cable type CF140.UL, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Loop capacitance up to 7 cores in nF/km approx.			125	125	140	140	165	190				
Loop capacitance from 12 cores in nF/km approx.					75	90	90					
Loop inductance in µH/km approx.			650	650	630	630	620	620				
Characteristic wave impedance at 1 kHz in Ω			80	80	80	75	70	60				
Capacitance: 2 cores versus all others up to 7 cores in nF/km approx.			310	310	360	370	430	510				
Capacitance: 2 cores versus all others up to 12 cores in nF/km approx.												
Cable type CF5, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Loop capacitance up to 7 cores in nF/km approx.				95	115	135	185	125				
Loop capacitance from 12 cores in nF/km approx.			120	90	105	105	135	670				
Loop inductance in μH/km approx.			760	720	670	670	640	150				
Characteristic wave impedance at 1 kHz in Ω			85	85	80	80	65					
Capacitance: 2 cores versus all others up to 7 cores in nF/km approx.				165	190	210	460					
Capacitance: 2 cores versus all others up to 12 cores in nF/km approx.			325	207	225	230	330					
Cable type CF6, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Loop capacitance up to 7 cores in nF/km approx.		130	125	135	150	165	185					
Loop capacitance from 12 cores in nF/km approx.				110	120	120	135					
		725	700	690	680	640	640					
Loop inductance in µH/km approx.		725	700	000								
Loop inductance in $\mu H/km$ approx. Characteristic wave impedance at 1 kHz in Ω		80	80	80	75	70	65					
						70 420	65 460					

^{*} The following values are approximate values, calculated from measurements of cables with different numbers of cores. The loop resistance can be maximally 5% over the specified value for cables that are very lavishly stranded in bundles (from 12 cores).

Cable type CF2, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω /km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Loop capacitance up to 7 cores in nF/km approx.	110	130			110	110	135					
Loop capacitance from 12 cores in nF/km approx.	100	120			130	105	135					
Loop inductance in µH/km approx.	690	630			740	730	670					
Characteristic wave impedance at 1 kHz in Ω	90	80			85	85	75					
Capacitance: 2 cores versus all others up to 7 cores in nF/km approx.	280	305			320	320	370					
Capacitance: 2 cores versus all others up to 12 cores in nF/km approx.	230	270			300	260	330					
Cable type CF9, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω /km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	2.6
Loop capacitance up to 7 cores in nF/km approx.		70	75	85	85	95	100	125	120	100		130
Loop capacitance from 12 cores in nF/km approx.		80		90	100	105	120	130				
Loop inductance in µH/km approx.		670	650	650	620	590	560	560	600	520		530
Characteristic wave impedance at 1 kHz in Ω		100	100	90	85	80	75	70	70	70		65
Capacitance: 2 cores versus all others up to 7 cores in nF/km approx.		115	135	135	145	145	170	190	150	185		200
Capacitance: 2 cores versus all others up to 12 cores in nF/km approx.		200		185	255	235	215	225				
Cable type CF10, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω /km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Loop capacitance up to 7 cores in nF/km approx.		90		105	110	120	125	150				
Loop capacitance from 12 cores in nF/km approx.	80	95		95	105	115	120	130				
Loop inductance in µH/km approx.	680	670		620	590	580	575	555				
Characteristic wave impedance at 1 kHz in Ω	100	90		85	80	75	75	65				
Capacitance: 2 cores versus all others up to 7 cores in nF/km approx.		215		245	260	290	290	345				
Capacitance: 2 cores versus all others up to 12 cores in nF/km approx.	180	200		205	225	255	265	275				
Capacitance. 2 cores versus an others up to 12 cores in hi /km approx.		200		200								
Cable type CF9.UL, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
			0.34			1	1.5	2.5	4	6	10	16
Cable type CF9.UL, Nominal cross section *			0.34			39	26.6	2.5	9.9	6.6	3.8	2.6
Cable type CF9.UL, Nominal cross section * Conductor loop consisting of two adjacent cores, aprox.	0.14	0.25		0.5	0.75							
Cable type CF9.UL, Nominal cross section * Conductor loop consisting of two adjacent cores, aprox. Loop resistance in Ω/km approx.	0.14	0.25	114	0.5 78	0.75	39	26.6	16	9.9	6.6		2.6
Cable type CF9.UL, Nominal cross section * Conductor loop consisting of two adjacent cores, aprox. Loop resistance in Ω/km approx. Loop capacitance up to 7 cores in nF/km approx.	0.14	0.25 158 70	114	78 85	0.75 52 85	39 95	26.6 100	16 125	9.9	6.6		2.6
Cable type CF9.UL, Nominal cross section * Conductor loop consisting of two adjacent cores, aprox. Loop resistance in Ω/km approx. Loop capacitance up to 7 cores in nF/km approx. Loop capacitance from 12 cores in nF/km approx.	0.14	0.25 158 70 80	114 75	0.5 78 85 90	0.75 52 85 100	39 95 105	26.6 100 120	16 125 130	9.9	6.6		2.6
Cable type CF9.UL, Nominal cross section * Conductor loop consisting of two adjacent cores, aprox. Loop resistance in Ω/km approx. Loop capacitance up to 7 cores in nF/km approx. Loop capacitance from 12 cores in nF/km approx. Loop inductance in μH/km approx.	0.14	0.25 158 70 80 670	114 75 650	0.5 78 85 90 650	0.75 52 85 100 620	39 95 105 590	26.6 100 120 560	16 125 130 560	9.9 120 600	6.6 100 520		2.6 130 530

^{*} The following values are approximate values, calculated from measurements of cables with different numbers of cores. The loop resistance can be maximally 5% over the specified value for cables that are very lavishly stranded in bundles (from 12 cores).

Cable type CF10.UL, Nominal cross section *	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Loop capacitance up to 7 cores in nF/km approx.		90		105	110	120	125	150				
Loop capacitance from 12 cores in nF/km approx.	80	95		95	105	115	120	130				
Loop inductance in μH/km approx.	680	670		620	590	580	575	555				
Characteristic wave impedance at 1 kHz in Ω	100	90		85	80	75	75	65				
Capacitance: 2 cores versus all others up to 7 cores in nF/km approx.		215		245	260	290	290	345				
Capacitance: 2 cores versus all others up to 12 cores in nF/km approx.	180	200		205	225	255	265	275				
Cable type CF98, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158										
Loop capacitance in nF/km approx.	62	75										
Loop inductance in μH/km approx.	600	565										
Characteristic wave impedance at 1 kHz in Ω	115	115										
Capacitance of one core versus all other cores in nF/km approx.	100	120										
Cable type CF240, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114									
Operating capacity at 1 kHz in nF/km approx.	100	110	120									
Characteristic wave impedance at 1 kHz in Ω	95	85	80									
Capacitance: 2 cores versus all others cores and shield in nF/km approx	x. 240	300	305									
Cable type CF211, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω /km approx.		158	114	78								
Operating capacity at 10 MHz in nF/km approx.		157	145	125								
Characteristic wave impedance at 1 kHz in Ω		75	70	80								
Characteristic wave impedance at 10 MHz in Ω approx.		60	50	60								
Cable type CF111, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.		158	114	78								
Operating capacity at 10 MHz in nF/km approx.		157	145	125								
Characteristic wave impedance at 1 kHz in Ω		75	70	80								
Characteristic wave impedance at 10 MHz in Ω approx.		60	50	60								
Cable type CF11, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Operating capacity at 10 MHz in nF/km approx.	100	110	115	140	145	150	150	180				
Characteristic wave impedance at 1 kHz in Ω	100	85	85	75	70	65	60	60				
Characteristic wave impedance at 10 MHz in Ω approx.	70	65	60	50	50	45	45	40				

Cable type CF12, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Operating capacity at 10 MHz in nF/km approx.		150		165		200						
Characteristic wave impedance at 1 kHz in Ω		70		70		50						
Characteristic wave impedance at 10 MHz in Ω approx.		45		45		35						
Cable type CF113.D, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Operating capacity at 1 kHz in nF/km approx.	55 - 80	65	55	50 - 110								
Characteristic wave impedance at 1 kHz in Ω	110	105	125	75 - 155								
Cable type CF111.D, Nominal cross section	0.14	0.25	0.34	0.5	0.75	1	1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276		114	78	52	39	26.6	16	9.9	6.6	3.8	
Operating capacity at 1 kHz in nF/km approx. (pair shielded)	80			65								
Operating capacity at 1 kHz in nF/km approx. (pair unshielded)	55		55	80								
Characteristic wave impedance at 1 kHz in Ω (pair shielded)	105			130								
Characteristic wave impedance at 1 kHz in Ω (pair unshielded)	115		115	90								
Cable type CF11.D, Nominal cross section	0.14	0.25	0.34	0.5	0.75		1.5	2.5	4	6	10	16
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω/km approx.	276	158	114	78	52	39	26.6	16	9.9	6.6	3.8	
Operating capacity at 1 kHz in nF/km approx.	55 - 80	65	55	50 - 110								
Characteristic wave impedance at 1 kHz in Ω	110	105	125	75 - 155								
Cable type CF260, Energy conductor												
Single impedance in Ω /km approx.			13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386	
Operating capacity in nF/km approx.			160	185		220		350				
Operating inductane in µH/km approx.			345	330		320		300				
Characteristic wave impedance at 1 kHz in Ω			90	90		85		55				
Capacitance of one core versus all other cores in nF/km approx.			150	150		175		325				
Cable type CF260, Signal pair												
Conductor loop consisting of two adjacent cores, aprox.												
Loop resistance in Ω /km approx.		39										
Loop capacitance in nF/km approx.		110										
Loop inductance in µH/km approx.		600										
Characteristic wave impedance at 1 kHz in Ω		80										
Capacitance of one core versus all other cores in nF/km approx.		200										

Cable type CF21.UL, Energy conductor	0.75	1	1.5	2.5	4	6	10	16	25	35	50
Single impedance in Ω /km approx.	26	19.5	13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386
Operating capacity in nF/km approx.	150	165	190	200	225	245	320				
Operating inductane in µH/km approx.	365	365	350	340	340	340	330				
Characteristic wave impedance at 1 kHz in Ω	95	95	80	80	70	70	60				
Capacitance of one core versus all other cores in nF/km approx.	130	140	170	170	200	210	270				
Cable type CF21.UL, Signal pair	0.34										
Conductor loop consisting of two adjacent cores, aprox.											
Loop resistance in Ω/km approx.	114	52	26.6								
Loop capacitance in nF/km approx.	80	100	130								
Loop inductance in µH/km approx.	580	600	600								
Characteristic wave impedance at 1 kHz in Ω	90	80	75								
Capacitance of one core versus all other cores in nF/km approx.	140	175	240								
Cable type CF27, Energy conductor											
Single impedance in Ω /km approx.	26	19.5	13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386
Operating capacity in nF/km approx.	170	180	220	220	250	260	285		350	595	
Operating inductane in µH/km approx.	360	380	355	355	325	310	310		310	310	
Characteristic wave impedance at 1 kHz in Ω	95	90	80	80	70	70	65		65	45	
Capacitance of one core versus all other cores in nF/km approx.	145	150	185	185	205	215	240		295	495	
Cable type CF27, Signal pair	0.5	0.75	1.5								
Conductor loop consisting of two adjacent cores, aprox.											
Loop resistance in Ω/km approx.	78	52	26.6								
Loop capacitance in nF/km approx.	92	100	130								
Loop inductance in µH/km approx.	650	600	600								
Characteristic wave impedance at 1 kHz in Ω	90	80	75								
Capacitance of one core versus all other cores in nF/km approx.	170	175	240								
Cable type CF30, Nominal cross section		1.5	2.5	4	6	10	16	25	35	50	70
Single impedance in Ω/km approx.		13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386	0.272
Operating capacity in nF/km approx.		145	155	170	170	195	215	220	270		
Operating inductane in µH/km approx.		330	330	320	320	310	300	295	290		
Characteristic wave impedance at 1 kHz in Ω		95	95	90	90	80	70	70	65		
Capacitance of one core versus all other cores in nF/km approx.		110	115	130	130	150	160	170	200		
Cable type CF31, Nominal cross section		1.5	2.5	4	6	10	16	25	35	50	70
Single impedance in Ω /km approx.		13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386	0.272
Operating capacity in nF/km approx.		190	200	215	235	270	295	300	305	370	500
Operating inductane in µH/km approx.		330	330	320	320	310	260	260	260	260	260
Characteristic wave impedance at 1 kHz in Ω		85	80	75	70	70	60	60	60	55	50
Capacitance of one core versus all other cores in nF/km approx.		170	180	190	210	240	280	250	285	330	440

Cable type CF34.UL.D, Nominal cross section			1.5	2.5	4	6	10	16	25	35	50	70	
Single impedance in Ω/km approx.			13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386	0.272	<u>.</u>
Operating capacity in nF/km approx.			120		145	150		200	175				
Operating inductane in µH/km approx.			340		320	320		310	310				
Characteristic wave impedance at 1 kHz in Ω			100		95	95		90	90				
Capacitance of one core versus all other cores in nF/km approx.			90		110	110		140	130				
Cable type CF35.UL, Nominal cross section			1.5	2.5	4	6	10	16	25	35	50	70	
Single impedance in Ω/km approx.			13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386	0.272	
Operating capacity in nF/km approx.				160	180	190	215	260					
Operating inductane in µH/km approx.				330	320	320	310	290					
Characteristic wave impedance at 1 kHz in Ω				100	85	85	75	70					
Capacitance of one core versus all other cores in nF/km approx.				140	155	170	190	220					
Cable type CF37.D, Nominal cross section			1.5	2.5	4	6	10	16	25	35	50	70	
Single impedance in Ω/km approx.			13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386	0.272	
Operating capacity in nF/km approx.			120		145	150		200	175				
Operating inductane in µH/km approx.			340		320	320		310	310				
Characteristic wave impedance at 1 kHz in Ω			100		95	95		90	90				
Capacitance of one core versus all other cores in nF/km approx.			90		110	110		140	130				
Cable type CF38, Nominal cross section			1.5	2.5	4	6	10	16	25	35	50	70	
Single impedance in Ω/km approx.			13.3	7.98	4.95	3.3	1.91	1.21	0.78	0.554	0.386	0.272	
Operating capacity in nF/km approx.				160	180	190	215	260					
Operating inductane in µH/km approx.				330	320	320	310	290					
Characteristic wave impedance at 1 kHz in Ω				100	85	85	75	70					
Capacitance of one core versus all other cores in nF/km approx.				140	155	170	190	220					
Cable type CF300.UL.D, Nominal cross section	1.5	2.5	4	6	10	16 25	35	50	70	95	120	150 1	85 240
Resistance in Ω /km approx.	13.3	7.98	4.95	3.3	1.910	1.210 0.780	0.554	0.386	0.272	0.206	0.161	0.129 0.	106 0.0801
Cable type CF310.UL, Nominal cross section	1.5	2.5	4	6	10	16 25	35	50	70	95	120	150 1	85 240
Resistance in Ω /km approx.	13.3	7.98	4.95	3.3	1.910	1.210 0.780	0.554	0.386	0.272	0.206	0.161	0.129 0.	106 0.0801
Cable type CF330.D, Nominal cross section	1.5	2.5	4	6	10	16 25	35	50	70	95	120	150 1	85 240
Resistance in Ω /km approx.	13.3	7.98	4.95	3.3	1.910	1.210 0.780	0.554	0.386	0.272	0.206	0.161	0.129 0.	106 0.0801
Cable type CF340, Nominal cross section	1.5	2.5	4	6	10	16 25	35	50	70	95	120	150 1	85 240
Resistance in Ω /km approx.	13.3	7.98	4.95	3.3	1.910	1.210 0.780	0.554	0.386	0.272	0.206	0.161	0.129 0.	106 0.0801

Special Cables Information Chemical resistance

Group	Chainflex® cable	Jacket material	1	2	3	4	Page
Control cable							
Control cable	CF130.UL	PVC	1				54
Control cable	CF140.UL	PVC	1				58
Control cable	CF5	PVC		2			62
Control cable	CF6	PVC		2			66
Control cable	CF77.UL.D	PUR			3		70
Control cable	CF78.UL	PUR			3		72
Control cable	CF2	PUR			3		74
Control cable	CF9	TPE				4	78
Control cable	CF10	TPE				4	82
Control cable	CF9.UL	TPE				4	86
Control cable	CF10.UL	TPE				4	90
Control cable	CF98	TPE				4	94
Control cable	CF99	TPE				4	96
Data cable							
Data cable	CF240	PVC		2			100
Data cable	CF211	PVC		2			102
Data cable	CF112	PUR			3		104
Data cable	CF113	PUR			3		106
Data cable	CF111	TPE				4	108
Data cable	CF11	TPE				4	112
Data cable	CF12	TPE				4	114
Bus cable							
Bus cable	CFBUS	TPE				4	118
Bus cable	CF11.LC	TPE				4	122
Bus cable	CF11.LC.D	TPE				4	124
Bus cable	CF14	TPE				4	126
Measuring system cab							
Measuring system cable		PVC		2			128
Measuring system cable		PUR			3		132
Measuring system cable		TPE				4	136
Measuring system cable		TPE				4	140
Koax cable							_
Koax cable	CFKoax1	TPE				4	144
	CFKoax1	TPE				4	144
Koax cable Fibre optic cable					3	4	
Koax cable Fibre optic cable Fibre optic cable	CFKoax1 CFLG.2H CFLK	PUR			3 3	4	150
Fibre optic cable Fibre optic cable Fibre optic cable Fibre optic cable	CFLG.2H CFLK	PUR PUR			3 3		150 152
Fibre optic cable	CFLG.2H CFLK CFLG.2LB	PUR PUR TPE				4 4 4	150 152 154
Fibre optic cable	CFLG.2H CFLK	PUR PUR				4	150 152
Fibre optic cable Servo cable	CFLG.2H CFLK CFLG.2LB CFLG.G	PUR PUR TPE TPE		2		4	150 152 154 156
Fibre optic cable Servo cable Servo cable	CFLG.2H CFLK CFLG.2LB CFLG.G	PUR PUR TPE TPE		2 2		4	150 152 154 156
Koax cable Fibre optic cable Servo cable Servo cable Servo cable	CFLG.2H CFLK CFLG.2LB CFLG.G	PUR PUR TPE TPE PVC PVC		2 2	3	4	150 152 154 156 160 162
Fibre optic cable Servo cable Servo cable Servo cable Servo cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260	PUR PUR TPE TPE PVC PVC PUR			3	4	150 152 154 156 160 162 166
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Servo cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D	PUR PUR TPE TPE PVC PVC PUR PUR			3 3 3	4	150 152 154 156 160 162 166 170
Koax cable Fibre optic cable Servo cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260	PUR PUR TPE TPE PVC PVC PUR			3	4	150 152 154 156 160 162 166
Fibre optic cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D	PUR PUR TPE TPE PVC PVC PUR PUR PUR		2	3 3 3	4	150 152 154 156 160 162 166 170 174
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR		2	3 3 3	4	150 152 154 156 160 162 166 170 174
Koax cable Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable Power cable Power cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PVC PVC		2	3 3 3	4 4	150 152 154 156 160 162 166 170 174
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable Power cable Power cable Power cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PVC PVC TPE		2	3 3 3	4 4	150 152 154 156 160 162 166 170 174 180 182 184
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D CF35.UL	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PUR PVC PVC TPE TPE		2	3 3 3	4 4 4	150 152 154 156 160 162 166 170 174 180 182 184
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D CF35.UL CF37.D	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PUR PTE TPE TPE TPE		2	3 3 3	4 4 4 4 4	150 152 154 156 160 162 166 170 174 180 182 184 186 188
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D CF35.UL CF37.D CF38	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PTE TPE TPE TPE TPE TPE TPE		2	3 3 3	4 4 4 4 4 4	150 152 154 156 160 162 166 170 174 180 182 184 186 188
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D CF35.UL CF37.D CF38 CF300.UL.D	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PTE TPE TPE TPE TPE TPE TPE TPE TPE		2	3 3 3	4 4 4 4 4 4	150 152 154 156 160 162 166 170 174 180 182 184 186 188 190 192
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D CF35.UL CF37.D CF38 CF300.UL.D CFPE	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PUR PUR PTPE TPE TPE TPE TPE TPE TPE TPE TPE TP		2	3 3 3	4 4 4 4 4 4 4	150 152 154 156 160 162 166 170 174 180 182 184 186 188 190 192 194
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D CF35.UL CF37.D CF38 CF300.UL.D CFPE CF310.UL	PUR PUR TPE TPE PVC PVC PUR		2	3 3 3	4 4 4 4 4 4 4 4	150 152 154 156 160 162 166 170 174 180 182 184 186 188 190 192 194 196
Fibre optic cable Servo cable Servo cable Servo cable Servo cable Servo cable Power cable	CFLG.2H CFLK CFLG.2LB CFLG.G CF210.UL CF21.UL CF260 CF27.D CF270.UL.D CF30 CF31 CF34.UL.D CF35.UL CF37.D CF38 CF300.UL.D CFPE	PUR PUR TPE TPE PVC PVC PUR PUR PUR PUR PUR PUR PTPE TPE TPE TPE TPE TPE TPE TPE TPE TP		2	3 3 3	4 4 4 4 4 4 4	150 152 154 156 160 162 166 170 174 180 182 184 186 188 190 192 194

Special Cables Information Chemical resistance

Cable type	1	2	3	4
Inorganic chemicals				
Aqueous solutions, neutral				
Water	+	+	+	+
Common salt (10%)	+	+	+	+
Glauber's salt (10%)	+	+	+	+
Aqueous solutions, alkaline				
Soda (10%)	0	+	0	+
Aqueous solutions, acid	0		0	
Sodium bisulfate (10%) Aqueous solutions, oxidizing	0	+	0	+
Hydrogen peroxide (10%)			1	1
Potassium permanganate (2%)	+ +	+	+	+
Inorganic acids	т	т	Т	Т
Hydrochloric acid, concentrated	_	_	_	_
Hydrochloric acid (10%)	0	0	0	+
Sulfuric acid, concentrated		_	_	_
Sulfuric acid (10%)	0	0	0	+
Nitric acid, concentrated		_	_	_
Nitric acid (10%)	0	0	_	0
Inorganic caustic solutions				
Soda lye, concentrated	_	_	_	0
Soda lye (10%)	0	0	0	+
Potassium lye, concentrated	_	_	_	0
Potassium lye (10%)	0	0	0	+
Ammonia, concentrated	0	0	0	+
Ammonia (10%)	+	+	+	+
Organic chemicals /				
organic acids				
Acetic acid, concentrated (glacial acetic acid)	-	-	-	0
Acetic acid (10% in H ₂ 0)	0	+	0	+
Tartaric acid (10% in H ₂ 0)	0	+	+	+
Citric acid (10% in H ₂ 0)	0	+	+	+
Ketones				
Acetones	_	-	_	0
Methyl ethyl ketone (MEK) Alcohols	_	_	_	0
Ethyl alcohol (spirit)		0	0	
Isopropyl alcohol	_	0	0	+
Diethylene glycol	0	0		
Aromatic compounds	U	O	+	+
Toluol	_	_	0	_
Xylol	_	_	0	_
Fuels			<u> </u>	
Gasoline	_	0	+	+
Diesel fuel	_	0	+	+
Synthetic oils /				
lubricating oil				
ASTM oil #2	0	+	+	+
Hydraulic oil				
Mineral oil base	-	0	+	+
Glycol base	0	0	+	+
Synthetic ester base	_	0	+	+
Vegetable oils				
Rapeseed oil	0	+	+	+
Olive oil	0	+	+	+
Soya bean oil	0	+	+	+
Cold cleaning agent				
Cold cleaning agent	_	0	+	0

⁺ no or minimum negative influence

- unstable, material partly destroyed

All information applies to room temperature

O medium reciprocal effect, short-term exposure permissible

The General Conditions

The General Conditions of Sale of igus® shall apply. Excessive and short deliveries of ± 10 % for cables conform with contractual agreements. Deliveries can be made in part-lengths. Statutory VAT must be added to the prices. The General Conditions of Sale and Delivery of igus® GmbH, Cologne, can be found online under www.igus.de. The prices quoted in the catalogue or other media are subject to alteration. igus

can modify the prices at any time at their own discretion.

User information

Since our products are constantly being developed further in the interest of our customers, we reserve the right to make technical alterations at any time. With the issue of this catalog, all previous publications lose their validity. Subject to printing errors.

Disclaimer

The terms "igus", ReadyCable", "ReadyChain", "Chainflex", "E-Chain Systems", "Energy Chain", "Energy Chain Systems", "E-Ketten", "E-KettenSysteme", "Flizz", "iglidur", "DryLin" are legally protected trademarks in the Federal Republic of Germany and in case also in foreign countries.

KTG

If cable drums are to be used, please visit KTG directly online.

▶ www.kabeltrommel.de

Product illustrations

The products illustrated are photos showing examples for whole series, i.e. the original cable can deviate from the cable shown.

Technical notes

The USB, FireWire and GigE-cables shown on these pages were developed for the ambitious industrial usage in E-Chains®. High proofness to oil and lubricants is as secured as protection against electromagnetical interferences. This high mechanical service life was reached with the usage of high quality materials which even care for the electrical safeness. In single cases communication errors can occur, if very different hardware and software is combined. We recommend tests with all components and the cables before starting serial production, to get the proove for a perfect running system. Of course we support you with the details of these electrical tests. Just give us a call!

The specifications in the catalogue referring to temperature range, bending radius and travel must be seen as limiting value specifications. If two limiting value specifications are combined, this can lead to a reduction of the cable's service life. The term "oilresistant" refers to a few selected oil types which have been tested accordingly. This does not mean, however, that the products are automatically resistant to all the oils on the market. Length printing: Respective printing of the metre length is already on many cables. These are not calibrated measurements, they are only intended as an orientation aid.

Just give us a call!

Special Cables Information Approbation and Approvals

Data and **Schedules**

+49-2203-96 49-222 Tel. +49-2203-96 49-0

igus[®] GmbH 51147 Köln, Germany

www.igus.eu info@igus.de

igus® Chainflex® cables for DESINA

DESINA: **DE**central and **S**tandardised **IN**st**A**llation technique is a recommendation of the Verein Deutscher Werkzeugmaschinenfabriken (VDW = Association of German machine tool industry) for the purpose of standardising components, interfaces and connecting systems.

DESINA describes an extensive whole concept for standardisation and decentralisation of the fluid technical and electrical installation of machines and plants.

For further information: www.desina.de

Underwriters Laboratories Inc.

For further information: www.ul-europe.com

Underwriters Laboratories Inc.

For further information: www.ul-europe.com

Canadian Standards Association

For further information: www.csa.ca

Commission Electrotechnique Internationale

Communauté Européenne

Configure and order cables online

igus® provides electronic support

Rectangular connectors, Sub D connectors, round connectors – you can now select cables yourself from your workplace or home PC. Experienced users will only need about one and a half minutes to assemble the cable they need via the Internet. The comwponents selected and all available ex-stock can then be placed in a virtual shopping basket and delivered by igus® without delay.

Filter the optimum cable out and order online

Using the QuickCable product finder, available online under **www.igus.eu/quickcable**, users can first search for the optimum technical solution and then make an online inquiry or place an order. Cable selection is via a choice of parameters: electrical, dynamic, mechanical and chemical parameters and environmental questions. Direct cable selection is also possible, of course.

Individual pin assignment

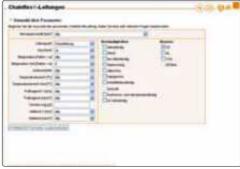
Once the cable type has been found, the new QuickPin configurator is the next step. Under **www.igus.eu/quickpin**, igus® offers all its connector types in a convenient menu, including reason test. The pin or wire contact assignment is flexible, depending on the user's requirements. The contacts can be assigned logically per mouse click, the pole images are then represented by symbols. This means that instead of a list in a table, the pin assignment can be viewed as an image on one page.

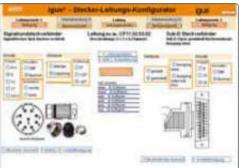
Calculate service life online

Calculate service life online – depending on the parameters **travel, bending radius and speed.** The program checks the logical plausibility of the parameters entered. The result is given in the number of double strokes to be expected. If other cable types could achieve better results on the basis of the parameters entered, this will be noted

igus® & *eplan*

Chainflex® cable library for eplan


- The article data of all Chainflex® cables are now downloadable in eplan standard!
 www.igus.eu/eplan-download
- Completely created cable type file, including information on colour codes, crosssections, shields, etc.
- Cable article file in eplan format for piece lists or order lists
- Fully compatible with eplan 5/eplan 8


i-net customer information system available at www.igus.eu

Track your order in real time with igus® i-net. Simply apply for your password, log in and you can then track your job status via webcam. You can also use the igus® i-net carrier tracking system to track your ordered merchandise from the igus® shipping process right up to your front door.

- Webcams
- More precise order data including an overview of target-actual deadlines
- Selection whether you prefer order confirmation or invoice by letter, fax or e-mail

More igus® products

Catalog Catalog

Energy Chain Systems® The complete program of Energy Chains®

Polymer Bearings Maintenance free polymer bearings

xigus 7

Energy Chain Systems® Electronic Catalog on CD ROM

xiglidur4.2

Bearings Polymer Electronic Catalog on CD ROM

Please call your local distributor for more informations about the igus® products.

igus® at www.igus.eu

The entire igus® product range as well as service and latest news can be found on the Internet at www.igus.eu

Special information of Chainflex® can be found on the Internet at www.chainflex.eu

Energy Chain Systems®

All products can be ordered online by clicking on Catalogs Online

Fast selection of all products and all important information

More than 70.000 products, all features and data

Free download of 3D product drawings from the Internet

More than 20 CAD formats and almost all product drawings available: effective design aid

Your questions answered by our online Energy Chain® experts

Polymer Plain Bearings

iglidur® plain bearings. 31 materials, all features and applications

Everything about self-adjusting and maintenance-free igubal® plain bearings

DryLin® W, T, N and R. The entire program of linear plain bearings

Polysorb®: Plastic disc springs

Huge product selection with DXF database

More than 20 CAD formats and almos all product drawings available: effective design aid

Table of contents according to part number

igus® Part No.	Page
Control cable	
Chainflex® CF2	
CF2.01.04	74
CF2.01.08	74
CF2.01.12	74
CF2.01.18	74
CF2.01.24	74
CF2.01.36	74
CF2.01.48	74
CF2.02.04	74
CF2.02.08	74
CF2.02.18	74
CF2.02.24	74
CF2.02.48	74
CF2.05.05	74
CF2.05.07	74
CF2.05.09	74
CF2.05.12	74
CF2.05.18	74
CF2.05.24	74
CF2.07.03	74
CF2.07.04	74
CF2.07.07	74
CF2.07.12	74
CF2.07.24	74
CF2.10.03	74
CF2.10.05	74
CF2.10.07	74
CF2.10.12	74
CF2.10.24	74
CF2.15.03	74
CF2.15.07	74
CF2.15.12	74
Control cable	
Chainflex® CF5	
OFF 00.06	60

Control cable	
Chainflex® CF5	
CF5.02.36	62
CF5.03.15	62
CF5.03.18	62
CF5.03.25	62
CF5.05.02	62
CF5.05.03	62
CF5.05.05	62
CF5.05.07	62
CF5.05.12	62
CF5.05.18	62
CF5.05.25	62
CF5.05.30	62
CF5.07.03	62
CF5.07.04	62
CF5.07.05	62
CF5.07.07	62
CF5.07.12	62
CF5.07.18	62
CF5.07.25	62
CF5.07.36	62
CF5.07.42	62
CF5.10.03	62
CF5.10.04	62
CF5.10.05	62
CF5.10.07	62
CF5.10.12	62
CF5.10.18	62
CF5.10.25	62
CF5.15.03	62
CF5.15.04	62
CF5.15.05	62
CF5.15.07	62
CF5.15.12	62

igus® Part No.	Page
CF5.15.18	62
CF5.15.25	62
CF5.15.36	62
CF5.25.04	62
CF5.25.05	62
CF5.25.07	62
CF5.25.12	62
CF5.25.18	62
CF5.25.25	62
Control cable	
Chainflex® CF6	
CF6.02.04	66
CF6.02.24	66
CF6.03.05	66
CF6.05.05	66
CF6.05.07	66
CF6.05.09	66
CF6.05.12	66
CF6.05.18	00
0. 0.000	66
CF6.05.24	66
CF6.05.24 CF6.07.03	66 66
CF6.05.24 CF6.07.03 CF6.07.04	66 66 66
CF6.05.24 CF6.07.03	66 66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

CF6.07.12

CF6.07.18

CF6.07.24

CF6.10.03

CF6.10.04

CF6.10.05

CF6.10.07

CF6.10.12

CF6.10.18

CF6.10.24

CF6.15.03

CF6.15.04 CF6.15.05

CF6.15.07

CF6.15.12

CF6.15.18

CF6.15.25

01 0.10.20	UU
CF6.25.04	66
Control cable	
Chainflex® CF9	
CF9.03.16.07.03.INI	78
CF9.02.02	78
CF9.02.03.INI	78
CF9.02.06	78
CF9.02.07	78
CF9.02.08	78
CF9.02.12	78
CF9.02.18	78
CF9.03.04.INI	78
CF9.03.05.INI	78
CF9.03.06	78
CF9.03.08	78
CF9.05.02	78
CF9.05.03	78
CF9.05.04	78
CF9.05.05	78
CF9.05.07	78
CF9.05.12	78
CF9.05.18	78
CF9.05.25	78
CF9.05.36	78
CF9.07.05	78
CF9.07.07	78
CF9.07.12	78

igus" Part No	o. Page
CF9.07.20	78
CF9.07.25	78
CF9.10.03	78
CF9.10.04	78
CF9.10.05	78
CF9.10.12	78
CF9.10.18	78
CF9.10.25	78
CF9.15.02	78
CF9.15.04	78
CF9.15.05	78
CF9.15.07	78
CF9.15.12	78
CF9.15.18	78
CF9.15.25	78
CF9.15.36	78
CF9.25.04	78
CF9.25.05	78
CF9.25.07	78
CF9.25.12	78
CF9.25.16	78
CF9.25.18	78
CF9.25.25	78
CF9.40.04	78
CF9.60.04	78
CF9.60.05	78
CF9.100.04	78
CF9.160.04	78
CF9.350.04	78
Cambual aabla	

Control cable	
Chainflex® CF9.UL	
CF9.UL.02.02	86
CF9.UL.02.03.INI	86
CF9.UL.02.04	86
CF9.UL.02.06	86
CF9.UL.02.07	86
CF9.UL.02.08	86
CF9.UL.02.12	86
CF9.UL.03.04.INI	86
CF9.UL.03.05.INI	86
CF9.UL.03.06	86
CF9.UL.03.08	86
CF9.UL.05.02	86
CF9.UL.05.03	86
CF9.UL.05.04	86
CF9.UL.05.05	86
CF9.UL.05.07	86
CF9.UL.05.12	86
CF9.UL.05.18	86
CF9.UL.05.25	86
CF9.UL.05.36	86
CF9.UL.07.05	86
CF9.UL.07.07	86
CF9.UL.07.12	86
CF9.UL.07.20	86
CF9.UL.07.25	86
CF9.UL.10.03	86
CF9.UL.10.04	86
CF9.UL.10.05	86
CF9.UL.10.12	86
CF9.UL.10.18	86
CF9.UL.10.25	86
CF9.UL.15.04	86
CF9.UL.15.05	86
CF9.UL.15.07	86
CF9.UL.15.12	86
CF9.UL.15.18	86
CF9.UL.15.25	86
CF9 UL 25 04	86

Content

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

174

174

art No.	Page	igus
).12	90	CF11.0
).18	90	CF11.0
).24	90	CF11.0
5.04	90	Б
5.05	90	Data
5.07	90	Chain
5.12	90	CF12.0
5.18	90	CF12.0
5.04	90	CF12.0
5.07	90	CF12.0
5.12	90	CF12.0
0.04	90	CF12.0
		CF12.0

GF10.0L.40.04	90
Data cable	
Chainflex® CF11	
CF11.01.04.02	112
CF11.01.18.02	112
CF11.02.02.02	112
CF11.02.03.02	112
CF11.02.04.02	112
CF11.02.05.02	112
CF11.02.06.02	112
CF11.02.09.02	112
CF11.02.10.02	112
CF11.02.14.02	112
CF11.03.08.02	112
CF11.05.04.02	112
CF11.05.06.02	112
CF11.05.08.02	112
CF11.07.03.02	112
CF11.10.04.02	112
CF11.15.06.02	112
CF11.25.03.02	112

Measuring system cables		
Chainflex® CF11.D		
CF11.001.D	140	
CF11.002.D	140	
CF11.003.D	140	
CF11.004.D	140	
CF11.005.D	140	
CF11.006.D	140	
CF11.007.D	140	
CF11.008.D	140	
CF11.009.D	140	
CF11.010.D	140	
CF11.011.D	140	
CF11.012.D	140	
CF11.013.D	140	
CF11.015.D	140	
CF11.017.D	140	
CF11.018.D	140	
CF11.019.D	140	
CF11.021.D	140	
CF11.022.D	140	
CF11.025.D	140	
CF11.027.D	140	

Bus cable	
Chainflex® CF11.LC	
CF11.02.03.02.IB-S	122
CF11.02.03.02.10.03.IB-S	122
CF11.05.01.02.LC	122
CF11.05.02.02.LC	122
CF11.02.02.02.PBA.LC	122
Bus cable	
Chainflex® CF11.LC.D	

124

124

CF27.250.15.02.01.D

CF27.350.15.02.01.D

CF11.02.01.02.PBA.LC.D

CF11.02.02.15.04.PBA.LC.D

igus® Part No.	Page	igus® Part No.	Page
CF9.UL.25.05	86	CF10.UL.10.12	9
CF9.UL.25.07	86	CF10.UL.10.18	9
CF9.UL.25.12	86	CF10.UL.10.24	9
CF9.UL.25.16	86	CF10.UL.15.04	9
CF9.UL.25.18	86	CF10.UL.15.05	9
CF9.UL.25.25	86	CF10.UL.15.07	9
CF9.UL.40.04	86	CF10.UL.15.12	9
CF9.UL.60.04	86	CF10.UL.15.18	9
Control cable		CF10.UL.25.04	9
		CF10.UL.25.07	9
Chainflex® CF10		CF10.UL.25.12	9
CF10.01.12	82	CF10.UL.40.04	9
CF10.01.18	82	Data cable	
CF10.02.04	82	Chainflex® CF11	
CF10.02.08	82		
CF10.02.12	82	CF11.01.04.02	11
CF10.02.24	82	CF11.01.18.02	11
CF10.05.04	82	CF11.02.02.02	11
CF10.05.05	82	CF11.02.03.02	11
CF10.05.12	82	CF11.02.04.02	11
CF10.05.18	82	CF11.02.05.02	11
CF10.05.25	82 82	CF11.02.06.02	11
CF10.07.04 CF10.07.05	82	CF11.02.09.02 CF11.02.10.02	11 11
CF10.07.05	82	CF11.02.10.02 CF11.02.14.02	11
CF10.07.12	82	CF11.03.08.02	11
CF10.07.12	82	CF11.05.04.02	11
CF10.07.24	82	CF11.05.06.02	11
CF10.10.02	82	CF11.05.08.02	11
CF10.10.03	82	CF11.07.03.02	11
CF10.10.04	82	CF11.10.04.02	11
CF10.10.05	82	CF11.15.06.02	11
CF10.10.07	82	CF11.25.03.02	11
CF10.10.12	82		
CF10.10.18	82	Measuring system ca	bles
CF10.10.24	82	Chainflex® CF11.D	
CF10.15.04	82	CF11.001.D	14
CF10.15.05	82	CF11.002.D	14
CF10.15.07	82	CF11.003.D	14
CF10.15.12	82	CF11.004.D	14
CF10.15.18	82	CF11.005.D	14
CF10.25.04	82	CF11.006.D	14
CF10.25.07	82	CF11.007.D	14
CF10.25.12	82	CF11.008.D	14
CF10.40.04	82	CF11.009.D	14
CF10.40.05	82	CF11.010.D	14
Control cable		CF11.011.D	14
		CF11.012.D	14
Chainflex® CF10.UL		CF11.013.D	14
CF10.UL.02.04	90	CF11.015.D	14
CF10.UL.02.08	90	CF11.017.D	14
CF10.UL.02.12	90	CF11.018.D	14
CF10.UL.02.24	90	CF11.019.D	14
CF10.UL.05.04	90	CF11.021.D	14
CF10.UL.05.05	90	CF11.022.D	14
CF10.UL.05.12	90	CF11.025.D	14
CF10.UL.05.18	90	CF11.027.D	14
CF10.UL.05.25	90	Bus cable	
CF10.UL.07.03	90		
CF10.UL.07.04	90	Chainflex® CF11.LC	
CF10.UL.07.05	90	CF11.02.03.02.IB-S	12
CF10.UL.07.07	90	CF11.02.03.02.10.03.IB-S	12
CF10.UL.07.12	90	CF11.05.01.02.LC	12
CF10.UL.07.20	90	CF11.05.02.02.LC	12
CF10.UL.07.24	90 90	CF11.02.02.02.PBA.LC	12
CF10.UL.10.02	90	Bus cable	

90

90

90

90

CF10.UL.10.03

CF10.UL.10.04

CF10.UL.10.05

CF10.UL.10.07

Table of contents according to part number

igus® Part No.	Page
CF11.02.02.07.03.PBA.LC.D	124
CF11.02.02.02.LC.D	124
CF11.05.01.02.LC.D	124
Data cable Chainflex® CF12	
	111
CF12.02.02.02	114
CF12.02.03.02 CF12.02.04.02	114 114
CF12.02.04.02 CF12.02.05.02	114
CF12.05.03.02	114
CF12.05.04.02	114
CF12.05.05.02	114
CF12.05.06.02	114
CF12.05.08.02	114
CF12.05.10.02	114
CF12.05.14.02	114
CF12.10.06.02	114
Bus cable	
Chainflex® CF14	
CF14.02.02.02.CAT5	126
CF14.02.04.02.CAT5	126
CF14.02.05.02.CAT5	126
Servo cable	
Chainflex® CF21.UL	
CF21.07.05.02.01.UL	162
CF21.15.10.02.01.UL	162
CF21.15.15.02.01.UL	162
CF21.25.10.02.01.UL	162
CF21.25.15.02.01.UL	162
CF21.40.10.02.01.UL	162
CF21.40.15.02.01.UL	162
CF21.60.10.02.01.UL CF21.60.15.02.01.UL	162 162
CF21.100.10.02.01.UL	162
CF21.100.15.02.01.UL	162
CF21.160.10.02.01.UL	162
CF21.160.15.02.01.UL	162
CF21.250.15.02.01.UL	162
CF21.350.15.02.01.UL	162
CF21.07.03.02.02.UL	162
CF21.10.07.02.02.UL	162
CF21.15.07.02.02.UL	162
CF21.25.15.02.02.UL	162
CF21.40.15.02.02.UL	162
CF21.60.15.02.02.UL	162
CF21.100.15.02.02.UL CF21.160.15.02.02.UL	162
CF21.160.15.02.02.UL	162 162
CF21.350.15.02.02.UL	162
	102
Servo cable Chainflex® CF27.D	
CF27.07.05.02.01.D	174
CF27.15.10.02.01.D	174
CF27.15.15.02.01.D	174
CF27.25.10.02.01.D	174
CF27.25.15.02.01.D	174
CF27.40.10.02.01.D	174
CF27.40.15.02.01.D	174
CF27.60.10.02.01.D	174
CF27.60.15.02.01.D	174
CF27.100.10.02.01.D	174
CF27.100.15.02.01.D	174
CF27.160.10.02.01.D	174
CF27.160.15.02.01.D	174

Table of contents according to part number

	_
igus [®] Part No.	Page
CF27.07.03.02.02.D	174
CF27.10.07.02.02.D	174
CF27.15.07.02.02.D	174
CF27.25.15.02.02.D	174
CF27.40.15.02.02.D	174
CF27.60.15.02.02.D	174
CF27.100.15.02.02.D	174
CF27.160.15.02.02.D	174
CF27.250.15.02.02.D	174
CF27.350.15.02.02.D	174
CF27.15.05.04.D	174
CF27.25.05.04.D	174
CF27.40.05.04.D	174
CF27.60.05.04.D	174
CF27.07.04.D	174
CF27.10.04.D	174
CF27.15.04.D	174
CF27.25.04.D	174
CF27.500.04.D	174
Power cable	

Power cable		
Chainflex®	CF30	
CF30.15.04		180
CF30.25.04		180
CF30.25.05		180
CF30.40.04		180
CF30.40.05		180
CF30.60.04		180
CF30.60.05		180
CF30.100.04		180
CF30.100.05		180
CF30.160.04		180
CF30.160.05		180
CF30.250.04		180
CF30.350.04		180
CF30.500.04		180

Power can	ole
Chainflex®	CF31
CF31.15.04	182
CF31.25.04	182
CF31.25.05	182
CF31.40.04	182
CF31.40.05	182
CF31.60.04	182
CF31.60.05	182
CF31.100.04	182
CF31.100.05	182
CF31.160.04	182
CF31.250.04	182
CF31.350.04	182
CF31.500.04	182
CF31.700.04	182

Power cable	
Chainflex® CF34.UL.D	
CF34.UL.15.04.D	184
CF34.UL.25.04.D	184
CF34.UL.40.04.D	184
CF34.UL.60.04.D	184
CF34.UL.60.05.D	184
CF34.UL.100.04.D	184
CF34.UL.100.05.D	184
CF34.UL.160.04.D	184
CF34.UL.160.05.D	184
CF34.UL.250.04.D	184
CF34.UL.60.04.O.PE.D	184
CF34.UL.100.04.O.PE.D	184
CF34.UL.160.04.O.PE.D	184
CF34.UL.500.03.O.PE.D	184

igus® Part No.	Page
Power cable	
Chainflex® CF35.UL	
CF35.UL.05.04	186
CF35.UL.07.04	186
CF35.UL.15.04	186
CF35.UL.25.04	186
CF35.UL.40.04	186
CF35.UL.60.04	186
CF35.UL.100.04	186
CF35.UL.160.04	186
CF35.UL.250.04	186
CF35.UL.60.03.O.PE	186
CF35.UL.100.03.O.PE	186
CF35.UL.160.03.O.PE	186
CF35.UL.250.03.O.PE	186
CF35.UL.350.03.O.PE	186
CF35.UL.500.03.O.PE	186

Power cable	
Chainflex® CF37.D	
CF37.15.04.D	188
CF37.25.04.D	188
CF37.40.04.D	188
CF37.60.04.D	188
CF37.60.05.D	188
CF37.100.04.D	188
CF37.100.05.D	188
CF37.160.04.D	188
CF37.160.05.D	188
CF37.250.04.D	188
CF37.60.04.O.PE.D	188
CF37.100.04.O.PE.D	188
CF37.160.04.O.PE.D	188
CF37.500.03.O.PE.D	188

I Owel Cable	
Chainflex® CF38	
CF38.05.04	190
CF38.07.04	190
CF38.15.04	190
CF38.25.04	190
CF38.40.04	190
CF38.60.04	190
CF38.100.04	190
CF38.160.04	190
CF38.250.04	190
CF38.60.03.O.PE	190
CF38.100.03.O.PE	190
CF38.160.03.O.PE	190
CF38.250.03.O.PE	190
CF38.350.03.O.PE	190
CF38.500.03.O.PE	190

Control cable	
Chainflex® CF77.UL.D	
CF77.UL.02.04.D	70
CF77.UL.05.04.D	70
CF77.UL.05.05.D	70
CF77.UL.05.12.D	70
CF77.UL.05.18.D	70
CF77.UL.05.25.D	70
CF77.UL.05.30.D	70
CF77.UL.07.03.D	70
CF77.UL.07.04.D	70
CF77.UL.07.05.D	70
CF77.UL.07.07.D	70
CF77.UL.07.12.D	70
CF77.UL.07.18.D	70
CF77.UL.07.20.D	70
CF77.UL.10.02.D	70

igus®	Part No.	Page
CF77.UL	10.03.D	70
CF77.UL	10.04.D	70
CF77.UL	10.05.D	70
CF77.UL	10.07.D	70
CF77.UL	10.12.D	70
CF77.UL	10.18.D	70
CF77.UL	10.25.D	70
CF77.UL	15.03.D	70
CF77.UL	15.04.D	70
CF77.UL	15.05.D	70
CF77.UL	15.07.D	70
CF77.UL	15.12.D	70
CF77.UL	15.18.D	70
CF77.UL	15.25.D	70
CF77.UL	25.04.D	70
CF77.UL	25.05.D	70
CF77.UL	25.07.D	70
CF77.UL	40.04.D	70

Control cable	
Chainflex® CF78.UL	
CF78.UL.05.04	72
CF78.UL.05.05	72
CF78.UL.05.07	72
CF78.UL.05.09	72
CF78.UL.05.12	72
CF78.UL.05.18	72
CF78.UL.05.24	72
CF78.UL.07.03	72
CF78.UL.07.05	72
CF78.UL.07.07	72
CF78.UL.07.12	72
CF78.UL.07.18	72
CF78.UL.10.03	72
CF78.UL.10.05	72
CF78.UL.10.07	72
CF78.UL.10.12	72
CF78.UL.10.18	72
CF78.UL.10.25	72
CF78.UL.15.03	72
CF78.UL.15.04	72
CF78.UL.15.05	72
CF78.UL.15.07	72
CF78.UL.15.12	72
CF78.UL.25.04	72
CF78.UL.25.05	72
CF78.UL.25.07	72
CF78.UL.40.04	72
Oznakuzi z zlolo	

Control cable	
Chainflex® CF98	
CF98.01.02	94
CF98.01.03	94
CF98.01.04	94
CF98.01.07	94
CF98.01.08	94
CF98.02.03.INI	94
CF98.02.04	94
CF98.02.07	94
CF98.02.08	94
CF98.03.03	94
CF98.03.04.INI	94
CF98.03.07	94
CF98.03.08	94
CF98.05.04	94
0 1 1 11	

Control cable	
Chainflex® CF99	
CF99.01.02	96
CF99.01.03	96
CF99.01.04	96

Content

Table of contents according to part number

Page

13.UL	58	
)5.UL	58	
8.UL	58	
86.UL	58	(
3.UL	58	
04.UL	58	9
)5.UL	58	

Fax +49-2203-96 49-222 Tel. +49-2203-96 49-0

igus[®] GmbH 51147 Köln, Germany

www.igus.eu

128

128

igus [®] Part No.	Page
CF99.01.07	96
CF99.01.08	96
CF99.02.03	96
CF99.02.04	96
CF99.02.07	96
CF99.02.08	96
CF99.03.03	96
CF99.03.04	96
CF99.03.08	96

Data cable	
Chainflex® CF111	
CF111.02.01.02	108
CF111.02.02.02	108
CF111.02.03.02	108
CF111.02.04.02	108
CF111.02.05.02	108
CF111.02.06.02	108
CF111.02.08.02	108
CF111.02.10.02	108
CF111.02.14.02	108
CF111.03.03.02	108
CF111.03.10.02	108
CF111.05.01.02	108
CF111.05.02.02	108
CF111.05.03.02	108
CF111.05.04.02	108
CF111.05.05.02	108
CF111.05.06.02	108
CF111.05.08.02	108
CF111.05.10.02	108
CF111.05.14.02	108

Measuring system cables	
Chainflex® CF111.D	
CF111.001.D	136
CF111.004.D	136
CF111.006.D	136
CF111.011.D	136
CF111.015.D	136
CF111.021.D	136
CF111.022.D	136
CF111.027.D	136
CF111.028.D	136
CF111.035.D	136

Data cable	
Chainflex® CF112	
CF112.02.02.02	104
CF112.02.03.02	104
CF112.02.04.02	104
CF112.02.05.02	104
CF112.02.06.02	104
CF112.05.02.02	104
CF112.05.03.02	104
CF112.05.04.02	104
CF112.05.05.02	104
CF112.05.06.02	104

Data cable	
Chainflex® CF113	
CF113.02.02.02	106
CF113.02.03.02	106
CF113.02.04.02	106
CF113.02.05.02	106
CF113.02.06.02	106
CF113.05.02.02	106
CF113.05.03.02	106
CF113.05.04.02	106
CF113.05.05.02	106
CF113.05.06.02	106

igus® Part No.	Page
Measuring system	cables
Chainflex® CF113.D)
CF113.001.D	132
CF113.002.D	132
CF113.003.D	132
CF113.004.D	132
CF113.005.D	132
CF113.006.D	132
CF113.007.D	132
CF113.008.D	132
CF113.009.D	132
CF113.010.D	132
CF113.011.D	132
CF113.012.D	132
CF113.013.D	132
CF113.015.D	132
CF113.017.D	132
CF113.018.D	132
CF113.019.D	132
CF113.021.D	132
CF113.022.D	132
CF113.025.D	132
CF113.027.D	132
CE112 029 D	122

CF113.028.D	132
Control cable	
Chainflex® CF130.UL	
CF130.02.03.UL	54
CF130.02.04.UL	54
CF130.03.02.UL	54
CF130.03.05.UL	54
CF130.05.02.UL	54
CF130.05.03.UL	54
CF130.05.04.UL	54
CF130.05.05.UL	54
CF130.05.07.UL	54
CF130.05.12.UL	54
CF130.05.18.UL CF130.05.25.UL	54 54
CF130.05.25.UL CF130.07.02.UL	54 54
CF130.07.03.UL	54
CF130.07.04.UL	54
CF130.07.05.UL	54
CF130.07.07.UL	54
CF130.07.12.UL	54
CF130.07.18.UL	54
CF130.07.25.UL	54
CF130.10.02.UL	54
CF130.10.03.UL	54
CF130.10.04.UL	54
CF130.10.05.UL	54
CF130.10.07.UL	54
CF130.10.12.UL	54
CF130.10.18.UL	54
CF130.10.25.UL	54
CF130.15.02.UL	54
CF130.15.03.UL	54
CF130.15.04.UL	54
CF130.15.05.UL	54
CF130.15.07.UL	54 54
CF130.15.12.UL CF130.15.18.UL	54
CF130.15.16.UL	54
CF130.15.25.0L	54
CF130.25.04.UL	54
CF130.25.07.UL	54
CF130.25.12.UL	54
CF130.40.03.UL	54
CF130.60.04.UL	54
CF130.60.05.UL	54
05400 400 04444	-

CF130.100.04.UL

Control cable	
Chainflex® CF140.UL	
CF140.02.12.UL	58
CF140.03.05.UL	58
CF140.05.03.UL	58
CF140.05.05.UL	58
CF140.05.18.UL	58
CF140.05.36.UL	58
CF140.07.03.UL	58
CF140.07.04.UL	58
CF140.07.05.UL	58
CF140.07.07.UL	58
CF140.07.12.UL	58
CF140.07.18.UL	58
CF140.07.25.UL	58
CF140.10.03.UL	58
CF140.10.04.UL	58
CF140.10.05.UL	58
CF140.10.07.UL	58
CF140.10.12.UL	58
CF140.10.18.UL	58
CF140.10.25.UL	58
CF140.15.03.UL	58
CF140.15.04.UL	58
CF140.15.05.UL	58
CF140.15.07.UL	58
CF140.15.12.UL	58
CF140.15.18.UL	58
CF140.15.25.UL	58
CF140.25.04.UL	58
Sonra cable	

igus® Part No.

Servo cable	
Chainflex® CF210.UL	
CF210.UL.15.15.02.01	160
CF210.UL.25.15.02.01	160
CF210.UL.40.15.02.01	160
CF210.UL.60.15.02.01	160
CF210.UL.15.07.02.02	160
CF210.UL.25.15.02.02	160
CF210.UL.40.15.02.02	160
CF210.UL.60.15.02.02	160
Data cable	

Data cable	
Chainflex® CF211	
CF211.02.01.02	102
CF211.02.02.02	102
CF211.02.03.02	102
CF211.02.04.02	102
CF211.02.05.02	102
CF211.02.06.02	102
CF211.02.08.02	102
CF211.02.10.02	102
CF211.02.14.02	102
CF211.03.03.02	102
CF211.03.08.02	102
CF211.03.10.02	102
CF211.05.01.02	102
CF211.05.02.02	102
CF211.05.03.02	102
CF211.05.04.02	102
CF211.05.05.02	102
CF211.05.06.02	102
CF211.05.08.02	102
CF211.05.10.02	102
CF211.05.14.02	102

Measuring system cables

Chainflex® CF211

CF211.001

CF211.002

Table of contents according to part number

0	
igus® Part No.	Page
CF211.006	128
CF211.009	128
CF211.010	128
CF211.011 CF211.014	128 128
CF211.014 CF211.016	128
CF211.017	128
CF211.018	128
CF211.019	128
CF211.027	128
Data cable	
Chainflex® CF240	
CF240.01.03	100
CF240.01.04	100
CF240.01.05	100
CF240.01.07	100
CF240.01.14	100
CF240.01.18	100
CF240.01.24	100
CF240.02.03	100
CF240.02.04	100
CF240.02.05	100
CF240.02.07 CF240.02.08	100
	100
CF240.02.14 CF240.02.18	100 100
CF240.02.16 CF240.02.24	100
CF240.03.03	100
CF240.03.04	100
CF240.03.05	100
CF240.03.07	100
CF240.03.10	100
CF240.03.14	100
CF240.03.18	100
CF240.03.24	100
Servo cable Chainflex® CF260	
	100
CF260.15.10.02.01	166
CF260.25.10.02.01 CF260.40.10.02.01	166
CF260.60.10.02.01	166 166
CF260.100.10.02.01	166
CF260.160.10.02.01	166
CF260.10.07.02.02	166
CF260.10.07.02.02	166
CF260.15.07.02.02	166
CF260.25.05.04	166
CF260.60.05.04	166
CF260.15.04	166
CF260.25.04	166
CF260.40.04	166
CF260.60.04	166
CF260.100.04	166
CF260.160.04	166
CF260.250.04	166
CF260.350.04	166
Servo cable	
Chainflex® CF260	
CF270.UL.15.15.02.01.D	170
CF270.UL.25.15.02.01.D	170
CF270.UL.40.15.02.01.D	170
CF270.UL.60.15.02.01.D	170
CF270.UL.100.15.02.01.D	170
CF270.UL.160.15.02.01.D	170
CF270.UL.07.03.02.02.D	170
CF270.UL.10.07.02.02.D	170

of contents acco	ording
igus [®] Part No.	Page
CF270.UL.15.03.02.02.D	170
CF270.UL.10.07.02.02.D	170
CF270.UL.15.07.02.02.D	170
CF270.UL.25.15.02.02.D	170
CF270.UL.40.15.02.02.D	170
CF270.UL.60.15.02.02.D	170
CF270.UL.100.15.02.02.D	170
CF270.UL.160.15.02.02.D	170
CF270.UL.250.15.02.02.D	170
CF270.UL.350.15.02.02.D	170
CF270.UL.15.04.D	170
CF270.UL.25.04.D	170
CF270.UL.40.04.D	170
CF270.UL.60.04.D	170
CF270.UL.100.04.D	170
CF270.UL.160.04.D	170
CF270.UL.250.04.D	170
CF270.UL.350.04.D	170
Power cable	
Chainflex® CF300.UL.I	D
CF300.UL.60.01.D	192
CF300.UL.100.01.D	192
CF300.UL.160.01.D	192
CF300.UL.250.01.D	192
CF300.UL.350.01.D	192
CF300.UL.500.01.D	192
CF300.UL.700.01.D	192
CF300.UL.950.01.D	192
CF300.UL.1200.01.D	192
CF300.UL.1500.01.D	192
CF300.UL.1850.01.D	192
Power cable	
Chainflex® CF310.UL	
	400
CF310.UL.40.01	196
CF310.UL.60.01	196 196
CF310.UL.100.01	
CF310.UL.160.01 CF310.UL.250.01	196 196
CF310.UL.350.01	196
CF310.UL.500.01	196
CF310.UL.700.01	196
CF310.UL.950.01	196
CF310.UL.1200.01	196
CF310.UL.1500.01	196
CF310.UL.1850.01	196
	100
Power cable	
Chainflex® CF 330.D	
CF330.60.01.D	198
CF330.100.01.D	198
CF330.160.01.D	198
CF330.250.01.D	198
CF330.350.01.D	198
CF330.500.01.D	198
CF330.700.01.D	198
CF330.950.01.D	198
CF330.1200.01.D	198
CF330.1500.01.D	198
CF330.1850.01.D	198
B	
Power cable	
Chainflex® CF 340	

CF340.40.01

CF340.60.01

CF340.100.01

CF340.160.01 CF340.250.01 200

200

igus® Part No.	Page
CF340.350.01	200
CF340.500.01	200
CF340.700.01	200
CF340.950.01	200
CF340.1200.01	200
CF340.1500.01	200
CF340.1850.01	200
01040.1000.01	200
Power cable	
Chainflex® CF BRAID	
CFBRAID.25.08	202
CFBRAID.25.08.C	202
	202
Bus cable	
Chainflex® CF BUS	
CFBUS.001	118
CFBUS.002	118
CFBUS.003	118
CFBUS.010	118
CFBUS.011	118
CFBUS.020	118
CFBUS.021	118
CFBUS.022	118
CFBUS.030	118
CFBUS.031	118
CFBUS.035	118
CFBUS.040	118
CFBUS.041	118
CFBUS.042	118
CFBUS.044	118
CFBUS.045	118
CFBUS.050	118
CFBUS.055	118
CFBUS.060	118
CFBUS.065	118
CFBUS.066	118
Power cable	
Chainflex® CF CRANE	
CFCRANE1x25/16-6/10kV	204
CFCRANE1x35/16-6/10kV	204
CFCRANE1x50/16-6/10kV	204
CFCRANE1x70/16-6/10kV	204
CFCRANE1x95/16-6/10kV	204
Koax cable	
Chainflex® CF Koax 1	
CFKoax 1.01	144
CFKoax 1.05	144
Twistable cable	
Chainflex® CFROBOT	
CFROBOT.035	222
CFROBOT.036	222
CFROBOT.037	222
CFROBOT.038 CFROBOT.039	222
OF NOBO 1.039	222
Twistable cable	
Chainflex® CFROBOT5	
CF Robot.500	220
CF Robot.500	220
	220
Twistable cable	
Chainflex® CFROBOT6	/7
CFROBOT6.100.03	218
CFROBOT6.160.03	218
CFROBOT6.250.03	218

Notes

+49-2203-96 49-222 Tel. +49-2203-96 49-0

igus® Part No. Page CFROBOT6.350.03 218 CFROBOT7.15.03.C 218

Table of contents according to part number

216

CFROBOT7.25.03.C 218 CFROBOT7.15.04.C 218 CFROBOT7.25.04.C 218

Twistable cable Chainflex® CFROBOT8 CFROBOT8.001 (Profibus) CFROBOT8.022 (Can) 216

CFROBOT8.0845 (GigE)

Twistable cable Chainflex® CFROBOT9 CFROBOT9.001 CFROBOT9.002 214 CFROBOT9.003 214 CFROBOT9.004 214 CFROBOT9.005 214 CFROBOT9.006 214

Fibre optic cable (FOC) Chainflex® CFLG.2H CFLG.2HG.MF.62,5/125 CFLG.2HG.MF.50/125 150 CFLG.2HS.MF.200/230 150

Fibre optic cable (FOC) Chainflex® CFLG.2LB CFLG.2LB.62,5/125 154 CFLG.2LB.50/125 154

Fibre optic cable (FOC) Chainflex® CFLG. G CFLG.6G.62,5/125.TC 156 CFLG.12G.62,5/125.TC 156 CFLG.6G.50/125.TC 156 CFLG.12G.50/125.TC 156

Fibre optic cable (FOC) Chainflex® CFLK CFLK.L1.01 152

Power cable Chainflex® CFPE CFPE.15.01 194 CFPE.25.01 194 194 CFPE.40.01 CFPE.60.01 194 CFPE.100.01 194 CFPE.160.01 194 CFPE.250.01 194 CFPE.350.01 194

					C	ontr	ol C	able	S							Data	a Ca	bles			
Chainflex® Quick Selection	70.0L	8 CF140.UL	62 62	66 66	G CF77.ULD	72 CF78.UL	74 74	64 78	0 LJ 0	8 CF9.UL	6 CF10.UL	8640 94	96 96	00 CF240	CF211	102	102	108 108	112	CF12	
Machine Tools/ Processing Machines													E			Í		Name of the last o			
Packaging Handling Automation		A. C.											16								
Granes/Materials-Handling Technology Storage and Retrieval Units for High- Bay/ Warehouses/ Indoor areas													E								
Cranes/Harbor Equipment Systems/Materials- Handling Technology/Outdoor																					
Low-Temperature Applications						No.							E .								
Timber Processing Machines													4								
Cutting and Welding Systems						No. of the last of															
PVC-free/ halogen-free													Ē			Ĭ					
UL and/or CSA approval																Ĭ.					
DESINA- conforming																					

Chainflex® according to Industries Measuring system Fibre optic cables (FOC) **Bus Cables Chainflex®** 124 **CF11.LC.D** CF11.LC CF113.D CF111.D CFKoax1 Quick **CFLG.2H** CFLG.G CFBUS CF11.D **SFLK Selection** 122 136 **FL (1)**

		Servo Cables Power Cables										lose	s								
Chainflex® Quick Selection Pages	09 CF210.UL	162 162	CE260 *	OF270.UL.D	174	0630	CF3	184 184	186 186	188	88 CE38	CF300.UL.D	B CFPE	196	198	002 CF340	CF BRAID	CECRANE	CEAIR 206	CFClean AIR	
Machine Tools/ Processing Machines	Š										l made	E.									
Packaging Handling Automation																				PLEX CLEANAIN	
Cranes/Materials-Handling Technology Storage and Retrieval Units for High- Bay/ Warehouses/ Indoor areas																100					
Cranes/Harbor Equipment Systems/Materials- Handling Techno- logy/Outdoor																100					
Low-Temperature Applications																					
Timber Processing Machines											Ĺ					Acti				FLEX CLEMINAIR.	
Cutting and Welding Systems	8													***	100						
PVC-free/ halogen-free																					
UL and/or CSA approval	Š																				
DESINA- conforming																					

Chainflex® according to Industries

Special Cables Information Previous product numbers CF211

New	Old	Number of cores	Core group	Colour code
Part No.	Part No.	and conductor		
		nominal cross		
		section [mm²]		
CF211.001	CF211.01.03.02.04.05.02	(3x(2x0.14)C+	3x(2x0.14)C	vellow/green, black/brown, red/orange
G1211.001	01211.01.03.02.04.03.02	(4x0.14)+(2x0.5))C	4x0.14	gray, blue, white-yellow, white-black
		(4.0.14)1(2.0.0))0	2x0.5	brown-red, brown-blue
CF211.002	CF211.01.03.02.05.02	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
0.21002	01211.01.00.02.00.02	(2x0.5C))C	2x0.5C	black, red
CF211.006	CF211.01.10.02.04.05.02	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
		(2x0.5+2x0.14)+	4x0.14	gray, blue, white-yellow, white-black
		(4x0.23+2x0.14))C	4x0.23	brown-yellow, brown-gray, green-black, green-red
		, "	2x0.5	brown-red, brown-blue
CF211.009	-	(4x(2x0.25)+2x1.0)C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
			2x0.5	white, brown
CF211.010	CF211.02.04.02.10.02	(4x(2x0.25)+2x1.0)C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
			2x1.0	white, brown
CF211.011	CF211.03.04.02.05.04	(4x(2x0.34)+4x0.5)C	4x(2x0.34)	black/brown, red/orange, yellow/green, blue/violet
			4x0.5	blue-white, black-white, red-white, yellow-white
CF211.014	CF211.02.04.02.C.05.02	(4x(2x0.25)C+	4x(2x0.25)C	white/brown, green/yellow, gray/pink, blue/red
		1x2x0.5)C	2x0.5	black (numeral printing 1-2)
CF211.016	CF211.02.C.03.02	(3x(2x0.25)C)C	3x(2x0.25)C	white/brown, green/yellow, gray/pink
CF211.017	CF211.01.04.02.10.04.01.04	(4x(2x0.14)+	(4x0.14)C	blue-black, red-black, yellow-black, green-black
		4x1.0+(4x0.14)C)C	4x(2x0.14)	red/black, green/brown, yellow/violet, pink/gray
			4x1.0	white-green, brown-green, blue, white
CF211.018	CF211.02.02.02.05.02.	(2x(2x0.25)+2x0.5)C	2x(2x0.25)	red/black, gray/pink
			2x0.5	white, brown
CF211.019	CF211.02.02.03.02.03.10.02.D	(3x0.25+	3x(2x0.25)C	brown/green, pink/gray, red/black
		3x(2x0.25)C+2x1.0)C	3x0.25	blue, yellow, violet
			2x1.0	white, brown
CF211.027	-	(5x(2x0.14)	5x(2x0.14)	green/brown, gray/yellow, white/violet, black/red, blue/pink
		+2x0.5)C	2x0.5	white-green, white-red

Special Cables Information Previous product numbers CF11.D

New Part No.	Old Part No.	Number of cores and conductor	Core group	Colour code
		nominal cross		
		section [mm²]		
CF11.001.D	CF11.01.03.02.02.04.05.02.D	(3x(2x0.14)C+	3x(2x0.14)C	yellow/green, black/brown, red/orange
		(4x0.14)+(2x0.5))C	4x0.14	gray, blue, white-yellow, white-black
			2x0.5	brown-red, brown-blue
CF11.002.D	CF11.01.03.02.05.02.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
		(2x0.5C))C	2x0.5C	black, red
CF11.003.D	CF11.01.03.02.10.02.D	(3x(2x0.14)+2x1.0)C	3x(2x0.14)	white/brown, green/yellow, gray/pink
			2x1.0	blue, red
CF11.004.D	CF11.01.04.02.01.04.05.04.D	(4x(2x0.14)+	4x(2x0.14)	brown/green, violet/yellow, gray/pink, red/black
		(4x0.14)C+4x0.5)C	(4x0.14)C	yellow-black, red-black, green-black, blue-black
			4x0.5	brown-green, white-green, blue, white
CF11.005.D	CF11.01.04.02.05.04.D	(4x(2x0.14)+4x0.5)C	4x(2x0.14)	white/brown, green/yellow, gray/pink, blue/red
			4x0.5	black, violet, gray-pink, red-blue
CF11.006.D	CF11.01.10.02.04.05.02.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, black/brown, red/orange
		(2x0.5+2x0.14)+	4x0.14	gray, blue, white-yellow, white-black
		(4x0.23+2x0.14))C	4x0.23	brown-yellow, brown-gray, green-black, green-red
			2x0.5	brown-red, brown-blue
CF11.007.D	CF11.03.02.02.D	(2x(2x0.34))C	4x0.34	white, brown, green, yellow
CF11.008.D	CF11.02.03.02.D	(3x(2x0.25))C	3x(2x0.25)	white/brown, green/yellow, gray/pink
CF11.009.D	CF11.02.04.02.05.02.D	(4x(2x0.25)+2x0.5)C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
			2x0.5	white, brown
CF11.010.D	CF11.02.04.02.10.02.D	(4x(2x0.25)+2x1.0)C	4x(2x0.25)	brown/green, blue/violet, gray/pink, red/black
			2x1.0	white, brown
CF11.011.D	CF11.03.04.02.05.04.D	(4x(2x0.34)+4x0.5)C	4x(2x0.34)	black/brown, red/orange, yellow/green, blue/violet
			4x0.5	blue-white, black-white, red-white, yellow-white
CF11.012.D	CF11.01.06.03.04.02.05.02.D	(3x(2x0.14)C+	3x(2x0.14)C	green/yellow, white/gray, blue/red
		(2x0.5+6x0.14)+	(3x0.14)C	red, green, brown
		(1x(3x0.14)C)C	6x0.14	blue, gray, gray, yellow, pink, violet
			2x0.5	brown-red, brown-blue
CF11.013.D	CF11.01.03.02.C.05.02.D	(3x(2x0.14)C+2x0.5)C	3x(2x0.14)C	white/brown, green/yellow, gray/pink
			2x0.5	red, blue
CF11.015.D		(4x(2x0.14)+4x0.5)C	4x(2x0.14)	brown/green, violet/yellow, gray/pink, red/black
			4x0.5	blue, white, brown-green, white-green
CF11.017.D	CF11.01.002.10.04.01.04.D	(4x(2x0.14)+	(4x0.14)C	blue-black, red-black, yellow-black, green-black
		4x1.0+(4x0.14)C)C	4x(2x0.14)	red/black, green/brown, yellow/violet, pink/gray
			4x1.0	white-green, brown-green, blue, white
CF11.018.D	CF11.02.02.02.05.02.D	(2x(2x0.25)+2x0.5)C	2x(2x0.25)	red/black, gray/pink
			2x0.5	white, brown
CF11.019.D	CF11.02.02.03.02.03.10.02.D	(3x0.25+	3x(2x0.25)C	brown/green, pink/gray, red/black
		3x(2x0.25)C+2x1.0)C	3x0.25	blue, yellow, violet
			2x1.0	white, brown
CF11.021.D	-	(6x0.5+5x2x0.25)C	(3x0.5)	black with numerals 1-3
			(3x0.5)	red with numerals 1-3
			(5x2x0.25)	yellow/white, gray/white, black/orange, white/brown, black/gray
CF11.022.D	-	(5x0.5+1x2x0.25)C	(5x0.5)	blue, green, yellow, gray, pink
			(2x0.25)	white, brown
CF11.025.D	-	(3x(2x0.14)C	3x(2x0.14)	green/yellow, blue/red, gray/pink
		+(2x0.5)C)C	(2x0.5)	white, brown
CF11.027.D	-	(5x(2x0.14)	5x(2x0.14)	green/brown, gray/yellow, white/violet, black/red, blue/pink
		+2x0.5)C	2x0.5	white-green, white-red

484

igus[®] Chainflex[®] Customer-specific cables for Energy Chain Systems[®]

Date:	Phone: +49-2203-96 49-0				
	Fax: +49-2203-96 49-222				
Sender:	Recipient:				
	igus [®] GmbH				
	Technical Marketing				
	Spicher Str. 1a				
Phone:	51147 Köln				
Fax:	Germany				

Special applications in the sector of flexible energy supply systems depend on special cables that function for a long time. As a manufacturer of Energy Chains® and the corresponding cables, we will plan your specific requirement case on a customized basis – already starting from a cable length of 500 meters. Planning and calculation security will save you time and money.

The is why our offers get to the point quickly. Please help us by filling out this questionnaire as completely as possible. With several brief items of information from the selection list, we will be glad to make you an offer. But we will also be pleased to help in person or by telephone with the clarification of technical details.

Technical information

Mechanical properties of the requested cable

-			
Application case (shor	t descriptic	on):	
Energy Chain® series Bending radius			
Velocity	V		
Acceleration			
Travel distance	S		
Travel frequency Number of double stro day to be expected Number of manufactu days to be expected			
or			
Environment			
Temperature (highest/lowest) Chemical influences (oils, etc.)			
Outdoor/Indoor use	O 🗆	Ι□	

Electrical properties of the requested cable

Voltage class

≤ 30 V 300/300 V 300/500 V 450/750 V 600/1000 V or operating voltage	
Cable type Data cable Twisted-pair Fibre-optic Bus specification Control cable Power cable Servo cable or other	
Cores Quantity / Cross section	
Shielding Total shield Pair shielding	
Sheath material PVC PVC oil-resistant PUR TPE Pair shielding Hybrid cable or other	
Additional options Flame-retardant Halogen-free or other	
Approbation CE CSA DESINA UL or other	

Other items

Max. Ø external

Numeral printing/colour code N

Estimated requirement/year

С

System Planning

Fax

igus[®] System Planning

Date: Phone: +49-2203-96 49-0 Fax: +49-2203-96 49-222 Sender: Recipient: igus® GmbH Technical Marketing Spicher Str. 1a Phone: 51147 Köln Fax: Germany

Please send us information on your application data to the extent possible. Within 24 hours, you will then receive a complete analysis together with a filling proposal and offer. Please call us if you have any questions

	a comprete an	anyono togotino. mini a	ming proposal and t	311011 1 10000 0	san ao n'you navo o		In
Installation space		mm	Fixed point: Travel centre point or mm from o			Overall width: Max. overall width allowedmm	
Insta	± R requ	uested:mm	Max. overall h	O	B _{Ri}	Guide exists? ☐ no ☐ yes. If yes, which guide: Dimensions: B _{RI} mm Dimensions: H _{RI} mm	
	Installation loc	cation/floor, wall, con	sole: mm	Supporting	g width (standard =	= 2 m) mm	
mics	Velocity:	(m/s) Acceleration:	((m/s²)		
Dynamics	Distances/day	/:	_ Days/year:		e:		
Environment						hips:	
E	Special details	s?:					
Filling of the Energy Chains®	Quantity	Manufacturer/Art. no.	Cross sections	Ø	Weight kg/m	Permissible bending radius	

Additional individual components requested:

Energy Chains® / Energy tube	Energy Chains®	
Chainflex® special cables	Energy tube	
Guiding troughs	To be opened on both sides	
Strain relief	To be opened in outer radius	
Harnessing	To be opened in inner radius	
Assembly		
Other	 Special requests:	
igus® system guarantee requested?		

stallation type

(Please	check	of
---------	-------	----

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

•	®
\mathbf{H}	

Energy Chain Systems®

Date:	Phone: +49-2203-96 49-0
	Fax: +49-2203-96 49-222
Sender:	Recipient:
	igus [®] GmbH
	Technical Marketing
	Spicher Str. 1a
Phone:	51147 Köln
Fax:	Germany

Planning of ready-made Energy Chain Systems®

Chain type:	Length:	
Filling:		

Interior separation/separators

Sketch of the arrangement of the cables

Excess length 1	Plug end 1	Screw connection 1	Excess length 2	Screw connection 2	Plug end 2

Fax order Fax	inquiry Ch	nainflex®	igus
Date: Sender: Phone: Fax:		Phone: +49-2203-96 Fax +49-2203-96 Recipient: igus® GmbH Technical Marketing Spicher Str. 1a 51147 Köln Germany	
for cables conform with contraction printed on them in m	tual agreements. Deliveries car	be made in part-lengths. Som	pages ve and short deliveries of ± 10 % ne Chainflex® cables have length ot calibrated. Statutory VAT must
be added to the prices. Item number	igus® order numbers	Quantity	Price per unit

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

igus® GmbH 51147 Köln, Germany www.igus.eu info@igus.de

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

igus® GmbH 51147 Köln, Germany

www.igus.eu info@igus.de

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

igus[®] GmbH 51147 Köln, Germany

iaus® worldwide

igus® offices

igus® distributors

igus® GmbH

Spicher Str. 1a 51147 Köln (Porz-Lind) Postfach 90 61 23 51127 Köln Phone +49-22 03-96 49-0 +49-22 03-96 49-222 info@igus.de

2 Australia

Treotham Automation Ptv. Ltd. Unit 36, 9 Powells Road, Brookvale NSW 2100 Phone +61-2-99 07 17 88 Fax +61-2-99 07 17 78 info@treotham.com.au

3 Austria

igus® Polymer Innovationen GmbH

4843 Ampflwang Phone +43-76 75-40 05-0 +43-7675-3203 igus-austria@igus.at

4 Argentina

FABRIMATICA S.A.

Av. Varela 2966 C.P. 1437 Buenos Aires Phone +54-11-49 18 00 09 Fax +54-11-49 19 00 80 ventas@fabrimatica.com

5 Belarus

STS Stromtehservis

19-609, Ul. Sharangovicha Minsk. 220018 Phone +375 17 313-4513 Fax +375 17 313-4514 common@strom-ts.com

igus® B.V.B.A.

Kolonel Begaultlaan 75 3012 Wilsele Phone +32-16-31 44 31 Fax +3∠-info@igus.be +32-16-31 44 39

igus® do Brasil Ltda.

Av. Eng. Alberto de Zagottis 655 Santo Amaro 04675-085 São Paulo - SP Phone +55-11-35 31 44 87 Fax +55-11-35 31 44 88 vendas@igus.com.br

8 Bulgaria

Atlas Technik EOOD BG-1612 Sofia

PK 51 +359-885-232595 +359-897-981669 Phone/Fax +359-2-859 76 81 al_popoff@techno-link.com

8 Bulgaria

Hennlich OOD, BG

4000 Plovdiv Konstantin Velichkov, 69, Ft. 3 Phone +359-32-511 326 Phone/Fax +359-32-621 929 office@hennlich.bg

9 Canada

igus® Office Canada 201 Millway Ave.

UNIT 25 Concord Ontario L4K 5K8 Phone +1-905-760 84 48 Fax +1-905-760 86 88 webmaster@igus.com

10 Chile

Vendortec

Vendortec San Martín # 2097 Maipú - Santiago Phone +56-2-710 58 25 ventas@vendortec.cl

igus® Shanghai Co., Ltd.

No. 28, Jiatai Road, Waigaoqiao Free Trade Zone Shanghai 200131, P.R.C. Phone +86-21-51 30 31 00 Fax +86-21-51 30 32 00 master@igus.com.cn

11 China South

igus® China Guangzhou office

Room 2306, West Tower, Yangcheng International Commerraingo ler g international confiner-cial Center, Tiyu, East Road, Guangzhou 510620, P.R.C Phone +86-20-38 87 17 26/7/8 Fax +86-20-38 87 17 68 quanqzhou@igus.com.cn

12 Croatia

Hennlich, Industrijska d.o.o.

Franie Wölfla 4 10000 Zagreb Phone +385-1-3874334 Fax +385-1-3874336 hennlich@hennlich.hr

13 Czech Republic

Hennlich Industrietechnik spol. s r.o. o.z. Lin-tech

Českolipská 9 41201 Litoměřice Phone Chains +420-416-71 13 32 Phone Bearings +420-416-71 13 39 Fax +420-416-71 19 99 lin-tech@hennlich.cz

14 Denmark

igus® ApS Postboks 243 8800 Viborg Phone +45-86-603373 Fax +45-86-603273 info@igus.dk

14 Denmark - E-Chains®

Solar AS

Industrievej Vest 43 6600 Vejen Phone +45-76-96 12 00 Fax +45-75-36 47 59 solar@solar.dk

14 Denmark

OEM Automatic A/S

4040 Jyllinge Phone +45-70 27 05 27 Fax +45-70 27 06 27 info@dk.oem.se

15 Egypt

Fedicom Trading Fayed Sami & Co.

12, El Mahaad El Swissri St., Flat 10 – 2nd Floor-Zamalek Cairo – A.R of Egypt Phone +202-2736 25 37 Fax +202-2736 31 96 mohamed.fayed@fedicom.com

15 Egypt

IEE International Company

for Electrical Engineering 2nd floor, 25 Orabi St Down Town, Cairo, Phone +202-25 76 73 70 Fax +202-25 76 73 75 anas@iee-egypt.com

16 Finland

SKS Mekaniikka Oy

Martinkyläntie 50 01720 Vantaa Phone +358-20-764 65 22 Fax +358-20-764 68 24 mekaniikka@sks.fi

16 Finland - Chainflex®

SKS Automaatio Oy

Martinkyläntie 50 01720 Vantaa Phone +358-20-764 67 48 Fax +358-20-764 6820 automaatio@sks fi

igus® SARL

49, avenue des Pépinières Parc Médicis 94832 Fresnes Cedex Phone +33-1-49 84 04 04 Fax +33-1-49 84 03 94 info@igus.fr

18 Greece - E-Chains®

Chrismotor s.a.

71, Sp. Patsi str 118 55 Athens Phone +30-210-34 25 574 Fax +30-210-34 25 595 info@chrismotor.gr

18 Greece - Bearings

J. & E. Papadopoulos S.A.

Retsina Street 185 45 Piraeus Phone +30-210-4113133 +30-210-4116781 sales@papadopoulos-sa.com

19 Hong Kong

Sky Top Enterprises Ltd Room 1707, Block C; Wah Tat Ind Centre; Wah Sing Street;

Kwai Chung; Hong Kong Phone +852-22 43 42 78 Fax +852-22 43 42 79 skytop@ctimail.com

20 Hungary

igus® Hungária Kft.

Mogyoródi u.32 1149 Budapest Phone +36-1-306-6486 Fax +36-1-431-03 74 info@igus.hu

20 Hungary

Tech-Con Kft. Vésõ utca 9-11

1133 Budapest Phone +36-1-412 41 61 Fax +36-1-412 41 71 tech-con@tech-con.hu

igus® (India) Pvt. Ltd.

199/1, 22nd Main, HSR Layout, Agara Post, Bangalore - 560 102 Phone +91-80-39 12 78 00 Fax +91-80-39 12 78 02 Fax +91-8 info@igus.in

22 Indonesia

Pt. Energi Canggih Indonesia Kelapa Gading Selatan

BJ 08 / 14 Gading Serpong Tangerang 15810 Phone +62-21-547 43 64 Fax +62-21-547 43 65 jakarta@energicanggih.com

23 Iran

Tameen Ehtiajat Fani Tehran (TAF CO.)

72. Iranshar Ave.. Unit 5 15816 Tehran, Iran
Phone +98-21-8831 78 51
Fax +98-21-8882 02 68 info@taf-co.com

igus[®] Ireland Fitzwilliam Business Centre 26 Upper Pembroke Street Dublin 2 Phone +353 1 6373921 Fax +353 1 6620365 sales@igus.ie

25 Israel

Conlog LTD P.O. Box 35 71 Petach Tikva 49134 Phone +972-3-926 95 95 Fax +972-3-923 33 67 conlog@conlog.co.il

26 Italy

igus[®] S.r.I. Via delle Rovedine, 4 23899 Robbiate (LC) Phone +39-039 5906.1 +39-039 5906.222 iausitalia@iaus.it

igus® k.k. Arcacentral 7F, 1-2-1 Kinshi, Sumida-ku Tokyo JAPAN Zip 130-0013 Phone +81 3 58 19 20 30 Fax +81 3 58 19 20 55 Fax +81 3 58 info@igus.co.jp

28 Latvia

INPAP Katrinas Str. 16 1045 Riga Phone +371-750 94 04 Fax +371-750 94 03 office@inpap.lv

29 Lebanon

Mecanix Shops

Gebran Safi Charles Helou Avenue Reinut Phone +961 1 486 701 Fax +961 1 490 929 mecanix@dm.net.lb

30 Lithuania

Hitech UAB

Terminalo g. 3 54469 Biruliskiu k. Kauno raj. Phone +370 37 323271 Fax +370 37 203273 info@hitech.lt

igus[®] Malaysia Sdn Bhd No. 19-1, Jalan PJU 1/3F Sunway Mas Commercial Centre 47301 Petaling Jaya Selangor D. E. Phone +603-7880 5475 Fax +603-7880 5479 awong@igus.de

31 Malaysia

Automation Industry & Systems (M) SDN.BHD.

50, Lorong Nagasari 11. Taman Nagasari 13600 Prai, Penang Phone +60-4-390 56 07 Fax +60-4-399 73 27 autoind@po.jaring.my

igus® México S. de R.L. de C.V.

Av. Tecnologico 496 Nte Col. Agricola-Bellavista 52149 Toluca Phone +52-722-27 14 273 Fax +52-722-27 14 274 fmarauez@iaus.com

igus® Nederland

Sterrenbergweg 9 3769 BS Soesterberg Phone +31-346-353932 Fax +31-346-353849

igus.nl@igus.de

33 Netherlands - Bearings

Elcee Holland BV

Kamerlingh Onnesweg 28 NL-3316 GL Dordrecht Phone +31-78-6544777 Fax +31-78-6544733 Fax +31-78 info@elcee.nl

34 New Zealand

Automation Equipment Ltd.

P.O. Box 5656 Frankton 45 Colombo Street Frankton, Hamilton Phone +64-7-847 20 82 Fax +64-7-847 71 60 sales@autoequip.co.nz

35 Norway / Iceland

ASI Automatikk AS

Ingv. Ludvigsensgate 23 3007 Drammen Phone +47-32-82 92 90 Fax +47-32-82 92 98 info@asiautomatikk.no

36 Peru

Profaco

Av. República de Panamá Nº 4130 - Surquillo Lima - Perú Phone +51-1-241 43 70 +51-1-242 52 95 +51-1-242 86 08 Fax ventas@profaco.com

igus® Sp zo.o ul. Parowcówa 10 b 02-445 Warszawa Phone +48-22-863 57 70 Fax +48-22-863 61 69 igus.pl@igus.com.pl

igus® Lda. R. Eng. Fzo R. Eng. Ezequiel Campos, 239 4100-231 Porto Phone +351-22-610 90 00 Fax +351-22-832 83 21 info@igus.pt

39 Romania

TechCon Industry SRL

Calea Crangasi nr. 60 060346 Bucuresti Phone +40-21-2219-640 Fax +40-21-2219-766 automatizari@meteor.ro

39 Romania

Hennlich SRL

Str. Patria, Nr17 310106 Arad Phone +40-257-21 11 19 Fax +40-257-21 10 21 igus@hennlich.ro

40 Russia

Eka-Service Kompani

1-aja Dubrowskaja, 2A, k. 35 109044 Moskau Phone +7-495-632 66 23 Fax +7-495-677 17 78 info@ekaservice.ru

40 Russia

Barti 000

194358 St. Petersburg Phone +7-812-972 49 14 Fax +7-812-448 38 28 barti@barti.ru

41 Serbia

Hennlich doo Beograd

Ul. S. Markovica 3/4 11400 Mladenovac Phone +381-11 39 43 414 Fax +381-11 39 43 412 office@hennlich.rs

igus[®] Singapore Pte Ltd. 15 Shaw Road, #03-02

Singapore 367953 Phone +65-64871411 Fax +65-64871511 Malaysia-Hotline +60-12-709 30 41 Thailand-Hotline +66-9-160 73 69 asia-sales@igus.de

43 Slovakia

Hennlich Industrietechnik s.r.o.

Košicka 52 821 08 Bratislava Phone +421-2-50 20 43 08 Fax +421-2-50 20 43 11 technik@hennlich.sk

44 Slovenia

Hennlich, d.o.o.

Industrijska tehnika Podnart 33 SI-4244 Podnart Phone +386-4-532 06 10 Fax +386-4-532 06 20 info@hennlich.si

45 South Africa

igus® Pty. Ltd. Unit 14, Heron Park

80 Corobrik Road PO Box 4214 PO Box 4214 4017 Riverhorse Valley Phone +27-31-569 6633 Fax +27-31-569 6636 admin@igus.co.za

46 South Ko

igus® Korea Co. Ltd.

25BL 13LT Namdong Ind. Complex 446-11 Nonhyundong, Namdonggu Incheon City, 405-300 Phone +82-32-821 29 11 Fax +82-32-821 29 13 sales-korea@igus.de

igus® S.L.

/ Llobatona, 6 Polígono Noi del Sucre 08840 Viladecans - Barcelona Phone +34-93-647 39 50 +34-93-647 39 51 igus.es@igus.es

igus® ab

Knut Påls väg 8 256 69 Helsingborg Phone +46-42-32 92 70 Fax +46-42-21 15 85 info@igusab.se

48 Sweden - E-Chains®

OEM Automatic AB

Box 1011 Dalagatan 4 573 28 Tranås Phone +46-75-2424100 Fax +46-75-2 info@aut.oem.se +46-75-2424159

48 Sweden - Bearings

incl. DrvLin®

Colly Components AB P.O. Box 76 164 94 Kista Phone +46-8-7030100 Fax +46-8-7039841 info@me.colly.se

igus® Schweiz GmbH

Industriestr. 11 4623 Neuendorf Phone +41-62-38 89 797 Fax +41-62-38 89 799 info.ch@igus.ch

igus® Taiwan Company Limited 2F, No 82, 32nd Road Taichung Industrial Park

40768 Taichung Phone +886-4-2358-1000 Fax +886-4-2358-1100 igus-taiwan@igus.com.tw

51 Thailand

Autoflexible Engineering Co., Ltd. 111 Soi. Sukhumvit, 62/1 Bangjak, Phakanong Bangkok 10260 Phone +66-2-311 2111
Fax +66-2-332 79 00
kwanchai@autoflexible.com

52 Turkey

HIDREL Hidrolik Elemanlar

Sanayi ve Ticaret A.S. Percemli Sk. No. 7 Tünel Mevkii 80000 Karaköv / Istanbul Phone +90-212-249 48 81 Fax +90-212-292 08 50 info@hidrel.com.tr

53 United Kingdom

igus® UK Ltd. 51A Caswell Road Brackmills Northampton NN4 7PW Phone +44-1604-67 72 40 Fax Chain +44-01604 67 72 42 Fax Bearing +44-01604 67 72 45 sales_uk@igus.co.uk

54 Ukraine

Cominpro Ltd.

Romena Rollana 12, Office 220 61058 Kharkov Phone +38-057 717 49 14 Fax +38-057 717 49 14 cominpro@gmail.com

55 USA

igus[®] inc. 50 N. Broadway P.O. Box 14349 East Providence, RI 02914 Phone +1-401-438 22 00 Fax +1-401-438 72 70 webmaster@igus.com

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

igus® GmbH 51147 Köln, Germany

www.igus.eu info@igus.de

Tel. +49-2203-96 49-0 Fax +49-2203-96 49-222

igus® GmbH 51147 Köln, Germany

www.igus.eu info@igus.de